

2021 Annual Groundwater Monitoring and Corrective Action Report - Revision 1

Martin Lake Steam Electric Station PDP 5 - Rusk County, Texas


Prepared for:

Luminant Generation Company LLC

Prepared by:

Golder Associates USA Inc., Member of WSP

1601 S. Mopac Expy, Suite 325D, Austin, Texas 78746

TABLE OF CONTENTS

LIST	OF FIGURES	ii
LIST	OF TABLES	ii
LIST	OF ATTACHMENTS	ii
<u>ACR</u>	ONYMS AND ABBREVIATIONS	.iv
EXE	CUTIVE SUMMARY	v
1.0	INTRODUCTION	1
2.0	MONITORING AND CORRECTIVE ACTION PROGRAM STATUS	3
3.0	KEY ACTIONS COMPLETED IN 2021	5
4.0	PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS	6
5.0	KEY ACTIVITIES PLANNED FOR 2022	7
6.0	REFERENCES	8

LIST OF FIGURES

Figure 1 PDP 5 Detailed Site Plan

LIST OF TABLES

Table 1 Statistical Background Values

Table 2 Appendix III Analytical Results

LIST OF ATTACHMENTS

Attachment 1 Laboratory Analytical Reports

Attachment 2 2021 Groundwater Potentiometric Surface Maps

Attachment 3 Alternate Source Demonstration Report

DOCUMENT REVISION RECORD

Issue No.	Date	Details of Revisions
Revision 0	January 31, 2022	Original Document
Revision 1	December 2022	Added laboratory analytical reports, groundwater potentiometric surface maps, and professional seals to figures where applicable

ACRONYMS AND ABBREVIATIONS

CCR Coal Combustion Residuals

C.F.R. Code of Federal Regulations

GWPS Groundwater Protection Standard

MCL Maximum Concentration Level

mg/L Milligrams per Liter

MLSES Martin Lake Steam Electric Station

NA Not Applicable

PDP Permanent Disposal Pond

SSI Statistically Significant Increase

SSL Statistically Significant Level

T.A.C. Texas Administrative Code

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

Golder Associates USA Inc. (Golder), Member of WSP, has prepared this report on behalf of Luminant Generation Company LLC (Luminant) to satisfy the 2021 annual groundwater monitoring and corrective action reporting requirements of 40 C.F.R. Part 257 and 30 T.A.C. Chapter 352 for the Permanent Disposal Pond 5 (PDP 5) (the "CCR unit") at the Martin Lake Steam Electric Station (MLSES) in Rusk County, Texas. The CCR unit and CCR monitoring well network are shown on Figure 1.

At the beginning and end of the 2021 reporting period, the CCR unit was operating under a Detection Monitoring Program as described in § 257.94. The Detection Monitoring Program for PDP 5 was established in September 2017. Statistically significant increases (SSIs) above background prediction limits were identified for several Appendix III parameters as part of the 2017 through 2020 Detection Monitoring events; however, Alternate Source Demonstrations were completed that indicated that a source other than the CCR unit caused the SSIs. During 2021, SSIs were also identified for Appendix III constituents, which included boron in well PDP-25, calcium in well PDP-23, and chloride in well MW-19. Alternate sources for the SSIs identified in the 2021 sample data are being evaluated in accordance with § 257.94. If an alternate source is not identified to be the cause of the 2021 SSIs, an Assessment Monitoring Program will be established in accordance with § 257.94(e)(2).

1.0 INTRODUCTION

The CCR Rule (40 C.F.R. 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) has been promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. TCEQ has adopted portions of the federal CCR rule at 30 T.A.C. Chapter 352 (Texas CCR Rule), and USEPA published its final approval of the Texas CCR rule on June 28, 2021. See 86 Fed. Reg. 33,892 (June 28, 2021). The Texas CCR Rule became effective on July 28, 2021, and it adopts and incorporates by reference the requirements for the annual groundwater monitoring report located at 40 C.F.R. § 257.90. See 30 T.A.C. § 352.901. It further adopts and incorporates by reference the Federal CCR Program requirements for detection and assessment monitoring in 30 T.A.C. §352.941 and 30 T.A.C. §352.951, respectively. Pursuant to 30 T.A.C. § 352.902, this report will be submitted to TCEQ for review no later than 30 days after the report has been placed in the facility's operating record. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per § 257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- (4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - (i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;

- (ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
- (iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):
 - (A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and
 - (B) Provide the date when the assessment monitoring program was initiated for the CCR unit.
- (iv) If it was determined that there was a SSL above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:
 - (A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;
 - (B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;
 - (C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
 - (D) Provide the date when the assessment of corrective measures was completed for the CCR unit.
- (v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and
- (vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The PDP 5 CCR Unit is currently in a Detection Monitoring Program. Golder collected the initial Detection Monitoring Program groundwater samples from the PDP 5 CCR monitoring well network in September 2017. Subsequent Detection Monitoring Program groundwater samples have been collected on a semi-annual basis since that time. Statistical analysis of the sample data is performed in accordance with the Statistical Analysis Plan for the Site (Golder 2022) and the USEPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities-Unified Guidance (USEPA 2009) to identify SSIs of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Summary

Sampling Dates	Parameters	SSIs	Assessment Monitoring Program Established
September 2017 February 2018 (re-samples)	Appendix III	Yes	No (Alternate Source Demonstration Completed)
June 2018 September 2018 November 2018 (re-samples)	Appendix III	Yes	No (Alternate Source Demonstration Completed)
May 2019 November 2019	Appendix III	Yes	No (Alternate Source Demonstration Completed)
May 2020 September 2020	Appendix III	Yes	No (Alternate Source Demonstration Completed)
June 2021 October 2021	Appendix III	Yes	No (Alternate Source Is Being Assessed)

The statistical background values and Appendix III analytical data are presented in Tables 1 and 2, respectively. SSIs of Appendix III parameters were identified for the 2017 through 2020 sampling events. An initial Alternate Source Demonstration was completed in 2018, which indicated that a source other than the CCR unit caused the SSIs observed in the 2017 sample data and 2018 re-sample data. Similarly, Alternate Source Demonstrations were completed in 2019 through 2021 based on the 2018 through 2020 sample data. As a result, PDP 5 has remained in the Detection Monitoring Program. A summary of the Alternate Source Demonstration based on the

2020 sample data is presented in Attachment 1 as required by § 257.94(e)(2).

Detection Monitoring Program groundwater samples were collected from the CCR groundwater monitoring network on a semi-annual basis in 2021, as required by the CCR Rule. The first 2021 semi-annual Detection Monitoring Program sampling event was conducted in June 2021. The second 2021 semi-annual Detection Monitoring Program sampling event was conducted in October 2021. The 2021 laboratory analytical reports are provided in Attachment 1. The analytical data from the 2021 semi-annual Detection Monitoring Program sampling events were evaluated using procedures described in the Statistical Analysis Plan (Golder 2022) to identify SSIs of Appendix III parameters over background concentrations. SSIs of Appendix III parameters over background concentrations were identified for several constituents for which SSIs had previously been attributed to alternate sources. Alternate sources for the SSIs identified in the 2021 sample data are being evaluated in accordance with § 257.94. If an alternate source is not identified to be the cause of the SSI, an Assessment Monitoring Program will be established in accordance with § 257.94(e)(2).

3.0 KEY ACTIONS COMPLETED IN 2021

Semi-annual Detection Monitoring Program groundwater monitoring events were completed in June and October 2021. The number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 2. A map showing the CCR unit and monitoring wells is provided as Figure 1. No CCR wells were installed or decommissioned in 2021.

PDP 5 was constructed in 2010 on top of and immediately adjacent to closed and capped former pre-CCR Rule coal ash surface impoundments that began operation in 1979. PDP 5 extends significantly above natural grade and represents a localized topographic high relative to the surrounding area. Based on this configuration, there are no upgradient monitoring wells at PDP 5. Water elevations measured in the CCR wells during the 2021 semi-annual groundwater sampling events were used to develop groundwater potentiometric surface maps, which are presented in (Attachment 2), which confirm that groundwater flows radially outward from the topographic high at PDP 5.

An Alternate Source Demonstration was completed in March 2021, which documented that a source other than PDP 5 caused the SSIs detected over background levels during the 2020 Detection Monitoring Program sampling events, as required by § 257.94(e)(2). A copy of the 2021 Alternate Source Demonstration is provided in Attachment 3.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the CCR groundwater monitoring program in 2021.

5.0 KEY ACTIVITIES PLANNED FOR 2022

The following key activities are planned for 2022:

- Luminant submitted a registration application to TCEQ under the Texas CCR Rule for the Martin Lake PDP 5 on January 24, 2022.
- Continue the Detection Monitoring Program in accordance with applicable provisions of 40 C.F.R. §257.95 and 30 T.A.C. §352.941.
- If an alternate source is identified to be the cause of the SSIs observed in 2021, which are described in this
 report, a written demonstration will be completed within 90 days of SSI determination and included in the
 following Annual Groundwater Monitoring and Corrective Action Report.
- If an alternate source is not identified to be the cause of the SSIs, an Assessment Monitoring Program will be established.

6.0 REFERENCES

Golder, 2022. Statistical Analysis Plan – Revision No. 1, Martin Lake Steam Electric Station – Permanent Disposal Pond 5, Rusk County, Texas.

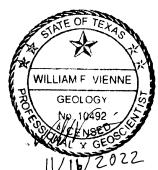
USEPA, 2009. Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, EPA 530/R-09-007, March.

Signature Page

Golder Associates Inc., Member of WSP

Patrick J. Behling Principal Engineer

William F. Vienne Senior Hydrogeologist


Golder and the G logo are trademarks of Golder Associates Corporation.

CCR MONITORING WELL

EXTERIOR TOE OF PDP-5 BERMS

REFERENCE(S)
BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/9/19.

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

TITLE

PDP-5 DETAILED SITE PLAN

GOLDER MEMBER OF WSP

YYY-MM-DD	2022-01-19
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. CONTROL REV. FIGURE 19122262 0 1

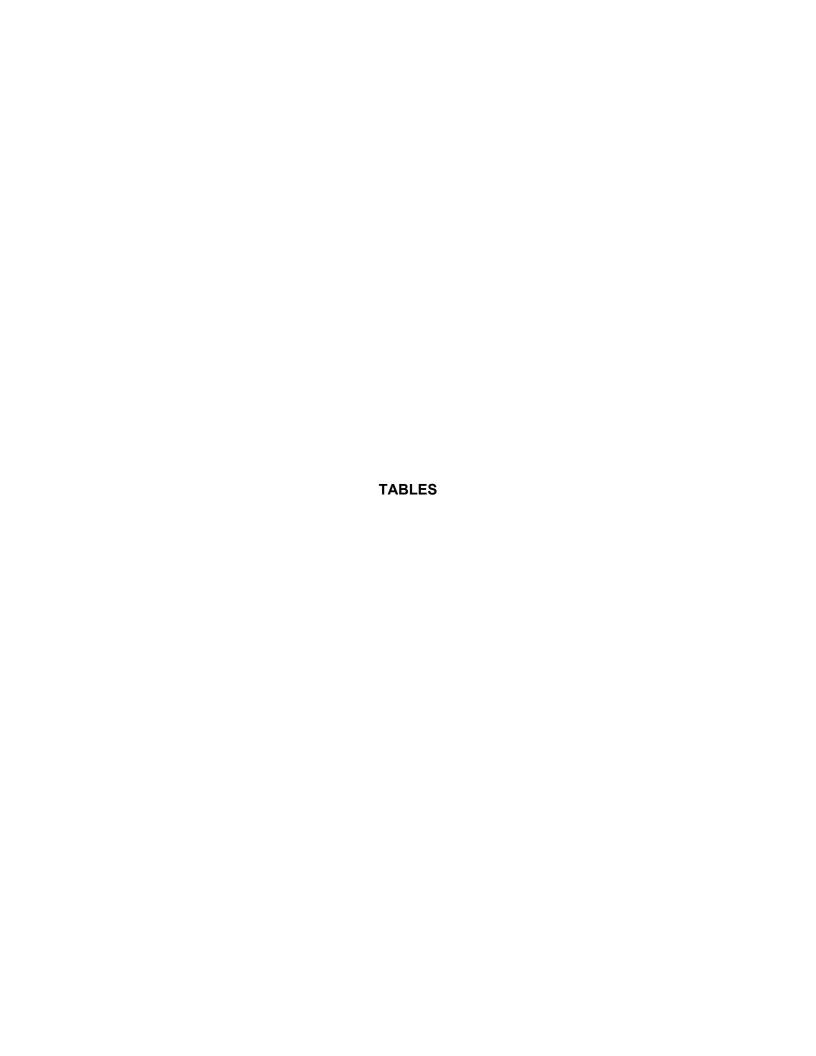


Table 1 Statistical Background Values MLSES - PDP 5

Sample Location	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Flouride (mg/L)	field pH (s.u.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-17A	0.538	6.73	10.4	0.4	2.5 9.19	51.9	170
MW-18A	0.20	3.1	10.4	0.4	4.88 7.92	9.1	157
MW-19	0.782	237	57.7	0.512	4.6 8.08	672	1,380
MW-20A	0.213	25.7	12.3	0.954	3.06 8.76	148	381
PDP-22	0.411	306	32.7	1.07	4.08 8.63	216	1,780
PDP-23	0.0678	2	7.52	0.4	3.38 8.45	3.27	143
PDP-24	4.92	45.9	22.6	1.03	1.33 9.97	533	894
PDP-25	0.136	41.3	197	0.4	4.65 7.93	118	705
PDP-26	0.111	4.74	14.6	0.577	5.35 7.57	64.6	438

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP 5

Sample	Date							
Location	Sampled	В	Ca	CI	F	field pH	SO₄	TDS
	09/22/17	0.402	3.1	8.3	<0.1	6.78	31.2	111
	06/14/18	0.485	6.48	9.16	<0.1	6.87	45.9	129
	09/11/18	0.523	5.06	8.82	0.179 J	5.03	43.1	137
	05/13/19	0.497	4.88	9.18	<0.1	6.79	44.7	145
MW-17A	11/07/19	0.52	5.05	8.81	<0.100	6.44	43.9	127
	05/19/20	0.521	5.09	8.74	<0.100	6.57	46.8	140
	09/25/20	0.477	5.76	10.1	<0.100	6.57	47.7	133
	06/03/21	0.534	6.21	7.83	<0.100	6.69	50.4	146
	10/05/21	0.393	3.95	8.42	<0.100	6.57	34.3	115
	09/21/17	0.0654	1.04	5.27	<0.1	6.94	3.23	45
	06/14/18	0.102	2	6.56	<0.1	6.92	3.48	71
	09/12/18	0.211	3.23	9.06	<0.1	5.69	4.82	150
	11/7/2018	0.420						
	re-sample	0.128						
MW-18A	05/13/19	0.117	1.01	6.17	0.138 J	6.64	3.23	73
	11/07/19	0.127	11.5	6.34	<0.100	6.23	3.67	68
	05/19/20	0.225	1.54	7.09	<0.100	6.89	5.97	86
	09/25/20	0.188	1.66	8.13	<0.100	6.78	6.03	77
	06/03/21	0.188	1.73	6.2	<0.100	6.69	6.20	76
	10/05/21	0.159	1.49	6.63	<0.100	6.59	5.73	76
	09/22/17	0.0677	2.74	5.36	<0.1	6.94	1.46 J	98
	06/14/18	0.577	133	24.4	0.216 J	6.78	328	758
	09/11/18	0.243	38	65.1	0.228 J	6.04	166	597
	11/7/2018			5.22				
	re-sample		-	5.22				
MW-19	05/13/19	0.429	122	26.8	0.229 J	6.72	349	813
	11/08/19	0.529	77.8	49.3	0.189 J	6.87	310	844
	05/19/20	0.0724	1.49	5.84	<0.100	6.91	1.02 J	85
	09/25/20	0.412	94.6	14.3	0.111 J	6.92	160	462
	06/03/21	0.56	140	19.5	0.352 J	6.75	336	751
	10/05/21	0.495	124	62.9	0.180 J	6.74	323	896
	09/22/17	0.0807	17.4	12.6	0.175 J	6.71	74.2	237
	02/21/18			10.7				
	re-sample			10.7				
	06/13/18	0.171	24	10.9	0.672	6.72	132	250
	09/11/18	0.141	7.16	11	0.235 J	4.70	39.1	154
MW-20A	05/13/19	0.239	37.4	10.2	0.731	6.81	178	328
	11/08/19	0.132	9.9	10.2	0.465	6.51	88	205
	05/19/20	0.220	24	10.4	0.413	6.83	133	270
	09/25/20	0.107	8.94	12.6	0.132 J	6.68	54.3	162
[06/03/21	0.152	26.1	9.63	0.324	6.73	93.2	218
	10/05/21	0.0724	6.12	10.8	0.127 J	6.44	32.8	139

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP 5

Sample	Date							
Location	Sampled	В	Ca	CI	F	field pH	SO ₄	TDS
	09/22/17	0.221	92.5	12.3	0.321 J	6.98	178	558
	06/14/18	0.115	7.78	11.8	0.239	6.63	186	491
	09/12/18	0.164	61.1	10.9	0.216 J	5.88	143	476
	05/13/19	0.158	98.2	10.1	0.303 J	6.86	184	615
PDP-22	11/12/19	0.226	34.3	12.6	0.218 J	6.93	215	482
	05/19/20	0.0646	54.9	1.06	<0.100	6.55	5.21	205
	09/25/20	0.206	25.1	12.7	0.128 J	6.73	186	398
	06/03/21	0.121	73.1	6.64	<0.100	6.52	118	415
	10/05/21	0.166	27.1	10.1	0.223 J	6.78	170	376
	09/22/17	0.0463	2.34	4.48	0.147 J	6.77	1.47 J	111
	02/21/18		2.37					
	re-sample							
	06/13/18	0.0357	2.29	6.21	<0.1	6.82	1.26 J	98
	09/11/18	0.0760	1.96	6.38	<0.1	5.32	1.52 J	98
	11/7/2018	0.0683						
PDP-23	re-sample							
	05/13/19	0.0628	1.89	6.98	<0.1	6.68	1.28 J	103
	11/12/19	0.0675	2.14	4.98	<0.100	6.72	1.41 J	93
	05/19/20	0.0709	2.03	6.86	<0.100	6.83	1.19 J	104
	09/25/20	0.0617	2.31	7.29	<0.100	6.74	<1.00	94
	06/03/21	0.0818	2.32	6.88	<0.100	6.57	1.42 J	101
	10/05/21	0.0661	2.38	6.58	<0.100	6.59	1.02 J	97
	09/22/17	3.01	25.8	17.5	0.898	6.95	231	440
	06/14/18	2.71	23.9	21.1	0.629	6.82	284	481
	09/11/18	4.08	41.6	19.4	0.832	4.20	460	760
	05/13/19	3.23	23	21	0.871	6.95	300	537
PDP-24	11/12/19	3	21.9	20.6	0.751	6.87	295	520
1 51 24	11/12/2019 DUP	2.97	22.2	20.5	0.744	6.87	300	504
	05/19/20	3.17	21.4	21	0.61	6.79	286	512
	09/25/20	4.04	40.7	19.6	0.776	6.83	445	699
	06/03/21	3.56	26.4	19.3	0.934	6.57	350	615
	10/05/21	4.24	46.9	17.8	0.782	6.72	432	681
	09/22/17	0.133	36.8	130	0.157 J	6.81	89.1	481
	06/14/18	0.119	40.4	111	<0.1	6.78	73.4	439
	09/11/18	0.167	36.2	135	0.115 J	5.87	90.3	469
	11/7/2018	0.142						
	re-sample							
PDP-25	05/13/19	0.144	44.4	108	0.121 J	6.84	69	469
	11/12/19	0.184	38.6	117	<0.100	6.82	71.4	454
	05/19/20	0.202	53.7	105	<0.100	6.61	62.2	442
	09/25/20	0.174	46.3	123	<0.100	6.77	67.5	445
	06/03/21	0.234	45.2	101	0.236 J	6.78	61.2	431
	10/05/21	0.159	40.4	115	<0.100	6.73	62.7	427

TABLE 2 **APPENDIX III ANALYTICAL RESULTS** MLSES PDP 5

Sample	Date							
Location	Sampled	В	Ca	CI	F	field pH	SO ₄	TDS
	09/22/17	0.0343	2.32	5.24	0.157 J	6.84	5.88	107
	06/14/18	0.0225 J	2.93	4.8	<0.1	6.89	4.27	100
	09/12/18	0.0371	2.37	4.88	<0.1	6.07	2.66 J	107
	05/13/19	0.0528	1.9	4.59	0.217 J	6.86	2.7 J	106
	11/12/19	0.0622	2.25	4.64	0.122 J	6.77	2.1 J	102
PDP-26	05/19/20	0.0538	2.09	4.52	<0.100	6.64	2.1 J	108
	09/25/20	0.0549	2.71	5.07	<0.100	6.83	1.91	92
	06/03/21	0.0516	2.37	4.05	<0.100	6.84	2.18 J	104
	6/3/21 DUP	0.0635	2.23	4.05	<0.1	6.84	2.05 J	107
	10/05/21	0.0486	3.85	4.48	0.194 J	6.74	3.28	104
	10/5/21 DUP	0.0432	3.58	4.24	0.192 J	6.74	2.49 J	103

Notes:

- All concentrations in mg/L. pH in standard units.
 J concentration is below sample quantitation limit; result is an estimate.

ATTACHMENT 1 LABORATORY ANALYTICAL REPORTS

June 11, 2021

Will Vienne

Golder

2201 Double Creek Dr #4004

Round Rock, Texas 78664

TEL: (512) 671-3434

FAX (512) 671-3446 Order No.: 2106027

RE: Luminant - MLSES CCR PDP-5

Dear Will Vienne:

DHL Analytical, Inc. received 10 sample(s) on 6/3/2021 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2106027	10
WorkOrderSampleSummary 2106027	11
PrepDatesReport 2106027	12
AnalyticalDatesReport 2106027	14
Analytical Report 2106027	16
AnalyticalQCSummaryReport 2106027	26
MQLSummaryReport 2106027	36

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com
Email: login@dhlanalytical.com

ANAL	YT	I C A L				Em	nail	: log	in@	dhl	ana	lyti	cal.	con	n												P/	AGE _		OF_	
LIENT: GOLDER															-					LA	ВО	RAT	OR	ΥL	JSE	ON	LY				
DDRESS:220 DOVE	BLE	CREEK '	DR. R	0014	ROGE	de	Z.,,													Dł	HL V	VOI	RKC	RD	ER	#:2	10/	50Z	7		
HONE:512-671-34	39	EMAIL:													,														-		
ATA REPORTED TO:			E			PR	OJE	CT L	OC.	ATIC	ON C	DR I	VAN	1E:	Lvn	מומ	M	<u>M7</u>	_	M	<u> 5</u>	E	<u>S</u>		10	R.	P	DP	-5		
DDITIONAL REPORT CO	PIES TO					CLI	EN	T PR	OJE	CT #	‡	191	22	22	62	<u> </u>				CC	DLLE	CT	OR:	J	0	HM	Ŀ	reA	470	N	
Authorize 5% surcharge		W=WATE	₹	SE=SE	DIMENT		PRI	ESER	VAT				9	ı			l e l	15	n l l			ıl			ı						
for TRRP report?		L=LIQUID		P=PAI				l				[093	D 100	l			5T 827		MET		2		ERB	#	EASE	NIDE					
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	2			Acatata	RVE	ES	OD 83	릴,	٦ ١	╻┃┇		-P PE	8 8 2 7 0	AMIN DISS.		ALINI			Ė	L&GR	CYAN	7				
	Only	SO=SOLID		,		lä:[ESE	ΓXS	METH	1900	8015	624.1 C 625	PAH		D PC	0.8 🗆		JALK	995	8	CRA 8	0	ST	₫				
Field Sample I.D.	DHL	Collection	Collection	Matrix	Container	Containers		واع	7	17	ANALYSES	ВТЕХ □ МТВЕ □ [МЕТНОВ 8260]	TPH 1005 □ TPH 1006 □ HOLD 1006 □	GRO 8015 DRO 8015	VOC 8260 □ VOC 624.1 □ SVOC 8270 □ SVOC 625.1 □	PAH 8270 ☐ HOLD PAH ☐	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 □ 608.3 □ PCB 8270 □ 625.1 □	HERB 8321 ☐ I PHOS ☐ AMMONIA ☐ METALS 6020 ☐ 200.8 ☐ DISS. METALS ☐	RCRA 8 TX11	PH□ HEX CHROM□ ALKALINITY□ COD□	ANIONS 300 □ 9056 □	TCLP-SVOC□ VOC□ PEST□ HERB□	TCLP-METALS ☐ RCRA 8 ☐ TX-11 ☐ Pb ☐	RCI □ IGN □ DGAS □ OIL&GREASE □	TDS = TSS = % MOIST = CYANIDE = A006 N / / / / / / / / / / / / / / / / / /	7				
rieid Sample 1.D.	Lab#	Date	Time		Туре	# of	뢰	HNO3	H2SO4		1	п тех	PH 100	SKO SU	VOC 82	AH 82	EST 82	CB 808	HERB 8:	CRA 8	밁	NOINS	rclp-sv	CLP-M					FIEL	D NO	TES
MW-17A	01	6-3-21	0905	W	P			X	Ī				Ť	T		Ť				Ť		Ì	Ħ	Ħ	Ī	15	₹	TT			
PPP-24	02		0950	W	P	22		X		XXXXXXXX											П						X	III			
PDP-25	03	6-3-21	1040	W	P	2222		又		メ													1	T	T	7	J		***************************************		
PDP-26		6-3-21	1125	W	P	2		X		X																>	⇃				
DUP-1		6-3-21	1125	W	ρ	2		X		X																7	<u> </u>				
MW-204		6-3-21	1230	W	P			X	┸	X																	4				
PDP-22	07	6-3-21	1315	W	P	222		X	┸	X																	<u> </u>				
PDP-23		6-3-21	1415	W	P	12		X		X																	4_				
MW~19	09	6-3-21	1515	W	P			X		X						_										_2	<u> </u>				
MW-18A	10	6-3-21	1620	W	P	2		X		X				┸												_2	<u> </u>				
						Ш					-		_		┸			_						_	_	\bot	\perp	Ш			
						\sqcup			\bot								Ш	_		_				_	_	_		\sqcup			
				ļ					\perp	_				_		$oldsymbol{\perp}$	Ш	\perp		_					_		\bot	\sqcup			
						Ш								1		_								4		\bot	_	$\perp \perp$			
						\sqcup		_	_	_		\Box	_	4	_	\perp			_	_			_	4		_	4	$\sqcup \!\!\! \perp$			
- A 7	<u> </u>					Ш				<u> </u>																	<u></u>				
eling lished By: (Sigh)		6-3	DATE/TIME 3-2()	300	Recei	JE	يح				(CA	ALL F	ARC	FO	R RL	JSH)		LABO RECE	IVIN	ORY G TE	MP (ON (°C):	LY 	<u>Z.</u>	ح				THE	 RM #: 7	78
elinquished By: (Sign)			DATE/TIME	0250	Recei	ved b	y:			RI	JSH-		AY□ JŞH-;			! DA	Y∐ │		CUS	TOD	Y SE	ALS:		BR	ROKE	in /	άŢΪν	ITACT	□N	OT USE	D
elinquished By: (Sign)			DATE/TIME	140	Recei		y:					RMA	AL X			ER 🗆	1	CA	RRIE	₹:		60	,						URIER	□ 0 ⁻	THER
										DI	JE D	ATE	: <u> </u>	1] HA	AND	DELI	VERE	:D			

Eric Lau

From: John DuPont

Sent: Tuesday, May 28, 2019 11:35 AM

To: Eric Lau

Subject: FW: CCR Analysis

Appendix III Parameters:

Metals (Ca and B)

Anions (Cl, F, and SO4)

TDS

Appendix IV Parameters:

Metals (As, Ba, Be, Cd, Co, Cr, Hg, Li, Mo, Pb, Sb, Se, and Tl)

Ra-226 Ra-228

From: Vienne, Will [mailto:William_Vienne@golder.com]

Sent: Tuesday, April 09, 2019 12:48 PM

To: John DuPont <dupont@dhlanalytical.com>

Subject: CCR Analysis

ORIGIN ID:GGGA (512) 671-3434

GOLDER ASSOCIATES 2201 DOUBLE CREEK DR STE 4004

ROUND ROCK, TX 78664 UNITED STATES US SHIP DATE: 03JUN21 ACTWGT: 44.20 LB CAD: 6994166/SSFE2201 DIMS: 26x14x14 IN

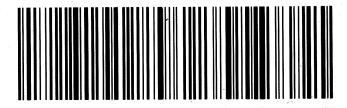
BILL THIRD PARTY

TO DHL ANALYTICAL LABS DHL ANALYTICAL LABS 2300 DOUBLE CREEK DR

ROUND ROCK TX 78664

(512) 388 - 8222

:


FedEx Express

Part # 156297-4953978864/EK6551/21

TRK# 7879 2099 7873

A8 BSMA

FRI - 04 JUN 10:30A PRIORITY OVERNIGHT AHS 78664 TX-US AUS

CUSTODY SEA

DATE

SIGNATURE

AL

Golder
PDP5 CCR

Sample Receipt Checklist Date Received: 6/3/2021 Client Name Golder Work Order Number 2106027 Received by: EL 6/4/2021 Checklist completed by: 6/4/2021 Reviewed by Carrier name: FedEx 1day Yes 🗸 No 🗌 Not Present Shipping container/cooler in good condition? Yes 🗹 No 🗌 Not Present Custody seals intact on shippping container/cooler? Yes No 🗌 Not Present 🗹 Custody seals intact on sample bottles? Chain of custody present? Yes 🗸 No 🗌 No 🗌 Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Yes 🗹 No 🗌 Samples in proper container/bottle? Yes 🗸 No 🗌 Sample containers intact? No 🗌 Yes 🗸 Sufficient sample volume for indicated test? Yes 🗸 No 🗌 All samples received within holding time? No 🗌 3.5 °C Yes 🗸 Container/Temp Blank temperature in compliance? Yes 🗌 No 🗌 No VOA vials submitted Water - VOA vials have zero headspace? Yes 🗸 No 🗌 NA 🗌 LOT# Water - pH<2 acceptable upon receipt? 13171 Adjusted? Checked by NA 🗹 Yes No 🗌 LOT# Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Adjusted? Checked by Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted Contacted by: Regarding: Comments:

Page 1 of 1

Corrective Action:

R1 OI Chain-of-Custody (C-O-C)	No	NA ³	NR ⁴	ER# ⁵
Reviewer Name: Angie O'Donnell Laboratory Work Order: 2106027	No		NR ⁴	
Prep Batch Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report	No		NR ⁴	
#1 A2 Description Yes	No		NR ⁴	
R1 OI Chain-of-Custody (C-O-C) 1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? X 2) Were all departures from standard conditions described in an exception report? R2 OI Sample and Quality Control (QC) Identification 1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers? X 2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? X R3 OI Test Reports 1) Were all samples prepared and analyzed within holding times? X 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? X 3) Were calculations checked by a peer or supervisor? X 4) Were all analyte identifications checked by a peer or supervisor? X 5) Were sample detection limits reported for all analytes not detected? X 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?	No		NR ⁴	
R1 OI 1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? 2) Were all departures from standard conditions described in an exception report? R2 OI Sample and Quality Control (QC) Identification 1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers? 2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? X R3 OI Test Reports 1) Were all samples prepared and analyzed within holding times? X 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? X 3) Were calculations checked by a peer or supervisor? X 4) Were all analyte identifications checked by a peer or supervisor? X 5) Were sample detection limits reported for all analytes not detected? X 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		X		R1-01
2) Were all departures from standard conditions described in an exception report? R2 OI Sample and Quality Control (QC) Identification 1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers? 2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? X 2) Are all samples prepared and analyzed within holding times? 1) Were all samples prepared and analyzed within holding times? 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? X 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		X		R1-01
R2 OI Sample and Quality Control (QC) Identification 1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers? 2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? X		X		
1) Are all field sample ID numbers cross-referenced to the laboratory ID numbers? 2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? X R3 OI Test Reports 1) Were all samples prepared and analyzed within holding times? 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? X 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? X 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
2) Are all laboratory ID numbers cross-referenced to the corresponding QC data? R3 OI Test Reports 1) Were all samples prepared and analyzed within holding times? 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 3) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
R3 OI Test Reports 1) Were all samples prepared and analyzed within holding times? 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? X 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? X 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
1) Were all samples prepared and analyzed within holding times? 2) Other than those results < MQL, were all other raw values bracketed by calibration standards? 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
2) Other than those results < MQL, were all other raw values bracketed by calibration standards? 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?				
8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		X		
9) If required for the project, TICs reported? R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		X		
R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		X		
1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		Λ		
2) Were surrogate percent recoveries in all samples within the laboratory QC limits?		X		
		X		
R5 OI Test Reports/Summary Forms for Blank Samples				
1) Were appropriate type(s) of blanks analyzed?				
2) Were blanks analyzed at the appropriate frequency?				
3) Where method blanks taken through the entire analytical process, including preparation and, if				
applicable, cleanup procedures?				
4) Were blank concentrations < MDL? X				
5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample?		X		
R6 OI Laboratory Control Samples (LCS):				
1) Were all COCs included in the LCS?				
2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X				
3) Were LCSs analyzed at the required frequency?				
4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?				
5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used X				
to calculate the SDLs?				
6) Was the LCSD RPD within QC limits (if applicable)?				
R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data				
1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? X				
2) Were MS/MSD analyzed at the appropriate frequency? X 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? X				
4) Were MS/MSD RPDs within laboratory QC limits? X				
R8 OI Analytical Duplicate Data				
1) Were appropriate analytical duplicates analyzed for each matrix?				
2) Were analytical duplicates analyzed at the appropriate frequency?				
3) Were RPDs or relative standard deviations within the laboratory QC limits?				
R9 OI Method Quantitation Limits (MQLs):				
1) Are the MQLs for each method analyte included in the laboratory data package? X				
2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X				
3) Are unadjusted MQLs and DCSs included in the laboratory data package? X				
R10 OI Other Problems/Anomalies				
1) Are all known problems/anomalies/special conditions noted in this LRC and ER? X 2) Was applicable and available technology used to lower the SDL to minimize the matrix interference				
affects on the sample results?				
3) Is the laboratory NEL AC-accredited under the Teyas Laboratory Accreditation Program for the				
analytes, matrices and methods associated with this laboratory data package?		l		I.

		tory Name: DHL Analytical, Inc.	D					
		tory Review Checklist (continued): Supporting						
Proje	ct Na	ame: Luminant - MLSES CCR PDP-5 LRC	C Date: 6/11/2021					
Revie	wer	Name: Angie O'Donnell Lab	oratory Work Order: 2106027					
Prep	Batc	h Number(s): See Prep Dates Report Run	Batch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA^3	NR^4	ER# ⁵
S1		Initial Calibration (ICAL)		1 05	110	1,112	1120	DI.
	ļ —	i f	1.4 - 11: 001: 1: 2	37				
		1) Were response factors and/or relative response factors for each 2) Were percent RSDs or correlation coefficient criteria met?	anaryte within QC limits?	X				
		3) Was the number of standards recommended in the method used	d for all analytes?	X				
		4) Were all points generated between the lowest and highest stand		X				
		5) Are ICAL data available for all instruments used?	dard used to carculate the curve:	X				
		6) Has the initial calibration curve been verified using an appropr	iate second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CC		1				
~_		blank (CCB):	ory and commany canoration					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-re	equired QC limits?	X				
		3) Was the ICAL curve verified for each analyte?		X				
		4) Was the absolute value of the analyte concentration in the inorg	ganic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning	?	X				
		2) Were ion abundance data within the method-required QC limit	s?	X				
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-req	uired QC limits?	X				
S5_	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data)		X				
		2) Were data associated with manual integrations flagged on the r	aw data?	X				
S6	О	Dual Column Confirmation						
~-	_	1) Did dual column confirmation results meet the method-require	d QC?			X		
S7	О	Tentatively Identified Compounds (TICs):						
~~		1) If TICs were requested, were the mass spectra and TIC data su	bject to appropriate checks?			X		
S8_	1	Interference Check Sample (ICS) Results:		37				
CO	т	1) Were percent recoveries within method QC limits?	d A dd'4'	X				
S9	1	Serial Dilutions, Post Digestion Spikes, and Method of Standa						
		1) Were percent differences, recoveries, and the linearity wit method?	hin the QC limits specified in the	X				
810	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DC	Ss?	X				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable profici	ency tests or evaluation studies?	X				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtain	ned from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification docum	ented?	X				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – App		X				
		2) Is documentation of the analyst's competency up-to-date and o		X				
S15	OI	Verification/Validation Documentation for Methods (NELAC	Chapter 5)					
		1) Are all the methods used to generate the data document applicable?	ted, verified, and validated, where	X				
816	OI	Laboratory Standard Operating Procedures (SOPs):						
<u> </u>	51	1) Are laboratory SOPs current and on file for each method performance.	rmed?	X				
	<u> </u>	<u>^</u>						

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- Field chain-of-custody documentation;
- Sample identification cross-reference;
- Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5.
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- Test reports/summary forms for blank samples;
- Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each R9 method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

> John DuPont Name: Official Title: General Manager

Dr. Derhsing Luu Official Title: Technical Director Signature 6/14/2021
Date

CLIENT: Golder

Project: Luminant - MLSES CCR PDP-5 CASE NARRATIVE

Date: 11-Jun-21

Lab Order: 2106027

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300 - Anions Analysis Method M2540C - Total Dissolved Solids Analysis

Exception Report R1-01

The samples were received and log-in performed on 6/3/2021. A total of 9 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Date: 11-Jun-21

CLIENT: Golder

Project: Luminant - MLSES CCR PDP-5 Work Order Sample Summary

Lab Order: 2106027

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2106027-01	MW-17A		06/03/21 09:05 AM	6/3/2021
2106027-02	PDP-24		06/03/21 09:50 AM	6/3/2021
2106027-03	PDP-25		06/03/21 10:40 AM	6/3/2021
2106027-04	PDP-26		06/03/21 11:25 AM	6/3/2021
2106027-05	DUP-1		06/03/21 11:25 AM	6/3/2021
2106027-06	MW-20A		06/03/21 12:30 PM	6/3/2021
2106027-07	PDP-22		06/03/21 01:15 PM	6/3/2021
2106027-08	PDP-23		06/03/21 02:15 PM	6/3/2021
2106027-09	MW-19		06/03/21 03:15 PM	6/3/2021
2106027-10	MW-18A		06/03/21 04:20 PM	6/3/2021

Lab Order: 2106027 **Client:** Golder

Project: Luminant - MLSES CCR PDP-5

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2106027-01A	MW-17A	06/03/21 09:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	MW-17A	06/03/21 09:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-01B	MW-17A	06/03/21 09:05 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	MW-17A	06/03/21 09:05 AM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-02A	PDP-24	06/03/21 09:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	PDP-24	06/03/21 09:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-02B	PDP-24	06/03/21 09:50 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-24	06/03/21 09:50 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-24	06/03/21 09:50 AM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-03A	PDP-25	06/03/21 10:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	PDP-25	06/03/21 10:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-03B	PDP-25	06/03/21 10:40 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-25	06/03/21 10:40 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-25	06/03/21 10:40 AM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-04A	PDP-26	06/03/21 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	PDP-26	06/03/21 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-04B	PDP-26	06/03/21 11:25 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-26	06/03/21 11:25 AM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-05A	DUP-1	06/03/21 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	DUP-1	06/03/21 11:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-05B	DUP-1	06/03/21 11:25 AM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	DUP-1	06/03/21 11:25 AM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-06A	MW-20A	06/03/21 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	MW-20A	06/03/21 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-06B	MW-20A	06/03/21 12:30 PM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	MW-20A	06/03/21 12:30 PM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-07A	PDP-22	06/03/21 01:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	PDP-22	06/03/21 01:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848

Page 1 of 2

Lab Order: 2106027 **Client:** Golder

Project: Luminant - MLSES CCR PDP-5

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2106027-07A	PDP-22	06/03/21 01:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-07B	PDP-22	06/03/21 01:15 PM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-22	06/03/21 01:15 PM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-08A	PDP-23	06/03/21 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	PDP-23	06/03/21 02:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-08B	PDP-23	06/03/21 02:15 PM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	PDP-23	06/03/21 02:15 PM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-09A	MW-19	06/03/21 03:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	MW-19	06/03/21 03:15 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-09B	MW-19	06/03/21 03:15 PM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	MW-19	06/03/21 03:15 PM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	MW-19	06/03/21 03:15 PM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830
2106027-10A	MW-18A	06/03/21 04:20 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
	MW-18A	06/03/21 04:20 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	06/08/21 08:36 AM	100848
2106027-10B	MW-18A	06/03/21 04:20 PM	Aqueous	E300	Anion Preparation	06/07/21 09:36 AM	100841
	MW-18A	06/03/21 04:20 PM	Aqueous	M2540C	TDS Preparation	06/04/21 01:46 PM	100830

Lab Order: 2106027 Client: Golder

Project: Luminant - MLSES CCR PDP-5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2106027-01A	MW-17A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:34 AM	ICP-MS5_210609A
	MW-17A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	2	06/09/21 12:01 PM	ICP-MS4_210609A
2106027-01B	MW-17A	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 12:29 PM	IC2_210607A
	MW-17A	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-02A	PDP-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	10	06/09/21 12:16 PM	ICP-MS4_210609A
	PDP-24	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:37 AM	ICP-MS5_210609A
2106027-02B	PDP-24	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 12:45 PM	IC2_210607A
	PDP-24	Aqueous	E300	Anions by IC method - Water	100841	10	06/07/21 04:37 PM	IC2_210607A
	PDP-24	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-03A	PDP-25	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:40 AM	ICP-MS5_210609A
	PDP-25	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	5	06/09/21 12:18 PM	ICP-MS4_210609A
106027-03B	PDP-25	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 01:01 PM	IC2_210607A
	PDP-25	Aqueous	E300	Anions by IC method - Water	100841	10	06/07/21 05:25 PM	IC2_210607A
	PDP-25	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-04A	PDP-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:41 AM	ICP-MS4_210609A
	PDP-26	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 10:52 AM	ICP-MS5_210609A
2106027-04B	PDP-26	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 01:17 PM	IC2_210607A
	PDP-26	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-05A	DUP-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 12:20 PM	ICP-MS4_210609A
	DUP-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:42 AM	ICP-MS5_210609A
2106027-05B	DUP-1	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 01:33 PM	IC2_210607A
	DUP-1	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-06A	MW-20A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:45 AM	ICP-MS5_210609A
	MW-20A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	2	06/09/21 12:22 PM	ICP-MS4_210609A
2106027-06B	MW-20A	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 01:49 PM	IC2_210607A
	MW-20A	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-07A	PDP-22	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	10	06/09/21 12:24 PM	ICP-MS4_210609A
	PDP-22	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 12:42 PM	ICP-MS4_210609A

Page 1 of 2

Lab Order: 2106027 Client: Golder

Project: Luminant - MLSES CCR PDP-5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2106027-07A	PDP-22	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:47 AM	ICP-MS5_210609A
2106027-07B	PDP-22	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 02:05 PM	IC2_210607A
	PDP-22	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-08A	PDP-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:50 AM	ICP-MS5_210609A
	PDP-23	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 12:26 PM	ICP-MS4_210609A
2106027-08B	PDP-23	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 02:21 PM	IC2_210607A
	PDP-23	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-09A	MW-19	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	10	06/09/21 12:28 PM	ICP-MS4_210609A
	MW-19	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:53 AM	ICP-MS5_210609A
2106027-09B	MW-19	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 02:37 PM	IC2_210607A
	MW-19	Aqueous	E300	Anions by IC method - Water	100841	10	06/07/21 05:41 PM	IC2_210607A
	MW-19	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A
2106027-10A	MW-18A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 12:30 PM	ICP-MS4_210609A
	MW-18A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	100848	1	06/09/21 11:55 AM	ICP-MS5_210609A
2106027-10B	MW-18A	Aqueous	E300	Anions by IC method - Water	100841	1	06/07/21 02:53 PM	IC2_210607A
	MW-18A	Aqueous	M2540C	Total Dissolved Solids	100830	1	06/04/21 05:00 PM	WC_210604A

CLIENT: Golder

Project: Luminant - MLSES CCR PDP-5

Project No: 19122262

Lab Order: 2106027

11-Jun-21

Client Sample ID: MW-17A

Date:

Lab ID: 2106027-01

Collection Date: 06/03/21 09:05 AM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.534	0.0200	0.0600	mg/L	2	06/09/21 12:01 PM
Calcium	6.21	0.100	0.300	mg/L	1	06/09/21 11:34 AM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: BTJ
Chloride	7.83	0.300	1.00	mg/L	1	06/07/21 12:29 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	06/07/21 12:29 PM
Sulfate	50.4	1.00	3.00	mg/L	1	06/07/21 12:29 PM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	146	10.0	10.0	mg/L	1	06/04/21 05:00 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 10

CLIENT: Golder Client Sample ID: PDP-24

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-02

Project No: 19122262 **Collection Date:** 06/03/21 09:50 AM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW602	20B		Analyst: SP		
Boron	3.56	0.100	0.300	mg/L	10	06/09/21 12:16 PM	
Calcium	26.4	1.00	3.00	mg/L	10	06/09/21 12:16 PM	
ANIONS BY IC METHOD - WATER		E30	0			Analyst: BTJ	
Chloride	19.3	0.300	1.00	mg/L	1	06/07/21 12:45 PM	
Fluoride	0.934	0.100	0.400	mg/L	1	06/07/21 12:45 PM	
Sulfate	350	10.0	30.0	mg/L	10	06/07/21 04:37 PM	
TOTAL DISSOLVED SOLIDS		M2540C			Analyst: JS		
Total Dissolved Solids (Residue, Filterable)	615	10.0	10.0	mg/L	1	06/04/21 05:00 PM	

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 10

CLIENT: Golder Client Sample ID: PDP-25

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-03

Project No: 19122262 **Collection Date:** 06/03/21 10:40 AM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW602	20B			Analyst: SP		
Boron	0.234	0.0500	0.150		mg/L	5	06/09/21 12:18 PM	
Calcium	45.2	0.500	1.50		mg/L	5	06/09/21 12:18 PM	
ANIONS BY IC METHOD - WATER		E30	0				Analyst: BTJ	
Chloride	101	3.00	10.0		mg/L	10	06/07/21 05:25 PM	
Fluoride	0.236	0.100	0.400	J	mg/L	1	06/07/21 01:01 PM	
Sulfate	61.2	1.00	3.00		mg/L	1	06/07/21 01:01 PM	
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS	
Total Dissolved Solids (Residue, Filterable)	431	10.0	10.0		mg/L	1	06/04/21 05:00 PM	

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 3 of 10

CLIENT: Golder Client Sample ID: PDP-26

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-04

Project No: 19122262 **Collection Date:** 06/03/21 11:25 AM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20B			Analyst: SP	
Boron	0.0516	0.0100	0.0300		mg/L	1	06/09/21 11:41 AM
Calcium	2.37	0.100	0.300		mg/L	1	06/09/21 10:52 AM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: BTJ
Chloride	4.05	0.300	1.00		mg/L	1	06/07/21 01:17 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	06/07/21 01:17 PM
Sulfate	2.18	1.00	3.00	J	mg/L	1	06/07/21 01:17 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	104	10.0	10.0		mg/L	1	06/04/21 05:00 PM

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 10

CLIENT: Golder Client Sample ID: DUP-1

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-05

Project No: 19122262 **Collection Date:** 06/03/21 11:25 AM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20B			Analyst: SP	
Boron	0.0635	0.0100	0.0300		mg/L	1	06/09/21 12:20 PM
Calcium	2.23	0.100	0.300		mg/L	1	06/09/21 11:42 AM
ANIONS BY IC METHOD - WATER		E30	E300				Analyst: BTJ
Chloride	4.05	0.300	1.00		mg/L	1	06/07/21 01:33 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	06/07/21 01:33 PM
Sulfate	2.05	1.00	3.00	J	mg/L	1	06/07/21 01:33 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	107	10.0	10.0		mg/L	1	06/04/21 05:00 PM

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 5 of 10

CLIENT: Golder

Project: Luminant - MLSES CCR PDP-5

Project No: 19122262

Lab Order: 2106027

Date: 11-Jun-21

Client Sample ID: MW-20A

Lab ID: 2106027-06

Collection Date: 06/03/21 12:30 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW6020B					Analyst: SP
Boron	0.152	0.0200	0.0600		mg/L	2	06/09/21 12:22 PM
Calcium	26.1	0.200	0.600		mg/L	2	06/09/21 12:22 PM
ANIONS BY IC METHOD - WATER	ΓER		00				Analyst: BTJ
Chloride	9.63	0.300	1.00		mg/L	1	06/07/21 01:49 PM
Fluoride	0.324	0.100	0.400	J	mg/L	1	06/07/21 01:49 PM
Sulfate	93.2	1.00	3.00		mg/L	1	06/07/21 01:49 PM
TOTAL DISSOLVED SOLIDS		M254	IOC				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	218	10.0	10.0		mg/L	1	06/04/21 05:00 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 6 of 10

CLIENT: Golder Client Sample ID: PDP-22

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-07

Project No: 19122262 **Collection Date:** 06/03/21 01:15 PM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW60	20B		Analyst: SP		
Boron	0.121	0.0100	0.0300	mg/L	1	06/09/21 12:42 PM	
Calcium	73.1	1.00	3.00	mg/L	10	06/09/21 12:24 PM	
ANIONS BY IC METHOD - WATER		E30	00			Analyst: BTJ	
Chloride	6.64	0.300	1.00	mg/L	1	06/07/21 02:05 PM	
Fluoride	<0.100	0.100	0.400	mg/L	1	06/07/21 02:05 PM	
Sulfate	118	1.00	3.00	mg/L	1	06/07/21 02:05 PM	
TOTAL DISSOLVED SOLIDS		M254	IOC		Analyst:		
Total Dissolved Solids (Residue, Filterable)	415	10.0	10.0	mg/L	1	06/04/21 05:00 PM	

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 7 of 10

CLIENT: Golder Client Sample ID: PDP-23

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-08

Project No: 19122262 **Collection Date:** 06/03/21 02:15 PM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW6020B					Analyst: SP
Boron	0.0818	0.0100	0.0300		mg/L	1	06/09/21 12:26 PM
Calcium	2.32	0.100	0.300		mg/L	1	06/09/21 11:50 AM
ANIONS BY IC METHOD - WATER		E300					Analyst: BTJ
Chloride	6.88	0.300	1.00		mg/L	1	06/07/21 02:21 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	06/07/21 02:21 PM
Sulfate	1.42	1.00	3.00	J	mg/L	1	06/07/21 02:21 PM
TOTAL DISSOLVED SOLIDS		M2540C					Analyst: JS
Total Dissolved Solids (Residue, Filterable)	101	10.0	10.0		mg/L	1	06/04/21 05:00 PM

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 8 of 10

CLIENT: Golder Client Sample ID: MW-19

Project: Luminant - MLSES CCR PDP-5 Lab ID: 2106027-09

Project No: 19122262 **Collection Date:** 06/03/21 03:15 PM

Lab Order: 2106027 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - WATER		SW602	20B		Analyst: SP			
Boron	0.560	0.100	0.300		mg/L	10	06/09/21 12:28 PM	
Calcium	140	1.00	3.00		mg/L	10	06/09/21 12:28 PM	
ANIONS BY IC METHOD - WATER	ER		E300				Analyst: BTJ	
Chloride	19.5	0.300	1.00		mg/L	1	06/07/21 02:37 PM	
Fluoride	0.352	0.100	0.400	J	mg/L	1	06/07/21 02:37 PM	
Sulfate	336	10.0	30.0		mg/L	10	06/07/21 05:41 PM	
TOTAL DISSOLVED SOLIDS		M2540C				Analyst: JS		
Total Dissolved Solids (Residue, Filterable)	751	10.0	10.0		mg/L	1	06/04/21 05:00 PM	

Date:

11-Jun-21

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 9 of 10

CLIENT: Golder

Project: Luminant - MLSES CCR PDP-5

Project No: 19122262

Lab Order: 2106027

 $11 ext{-}Jun ext{-}21$

Client Sample ID: MW-18A

Date:

Lab ID: 2106027-10

Collection Date: 06/03/21 04:20 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.188	0.0100	0.0300	mg/L	1	06/09/21 12:30 PM
Calcium	1.73	0.100	0.300	mg/L	1	06/09/21 11:55 AM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: BTJ
Chloride	6.20	0.300	1.00	mg/L	1	06/07/21 02:53 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	06/07/21 02:53 PM
Sulfate	6.20	1.00	3.00	mg/L	1	06/07/21 02:53 PM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	76.0	10.0	10.0	mg/L	1	06/04/21 05:00 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 10 of 10

Date: 11-Jun-21

ICP-MS4 210428A

CLIENT: Golder **Work Order:** 2106027

ANALYTICAL QC SUMMARY REPORT

RunID:

Project: Luminant - MLSES CCR PDP-5

Sample ID: DCS2-100323 TestNo: Batch ID: 100323 SW6020B Units: mg/L SampType: DCS2 Run ID: ICP-MS4_210428A Analysis Date: 4/28/2021 10:34:00 AM Prep Date: 4/27/2021 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Calcium 0.302 0.300 0.300 0 101 70 130 0 0

Sample ID: DCS4-100323 Batch ID: 100323 TestNo: SW6020B Units: mg/L SampType: DCS4 Run ID: ICP-MS4_210428A Analysis Date: 4/28/2021 10:39:00 AM Prep Date: 4/27/2021 RLAnalyte Result SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 0.0310 0.0300 0.0300 0 103 70 130 0 0 Boron

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 1 of 10

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

ICP-MS4_210609A **RunID:**

The QC data in batch 100848 ap 06A, 2106027-07A, 2106027-08A			6027-01A, 2106	6027-02A, 2	106027-03A	, 210602	7-04A, 21060	27-05A, 2	106027-
Sample ID: MB-100848	Batch ID: 100848		TestNo:	swe	6020B		Units:	mg/L	
SampType: MBLK	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 11:33:	00 AM	Prep Date:	6/8/202	l
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
Boron	<0.0100	0.0300							
Sample ID: LCS-100848	Batch ID: 100848		TestNo:	swe	6020B		Units:	mg/L	
SampType: LCS	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 11:35:0	00 AM	Prep Date:	6/8/202	I
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
Boron	0.201	0.0300	0.200	0	100	80	120		
Sample ID: LCSD-100848	Batch ID: 100848		TestNo:	swe	6020B		Units:	mg/L	
SampType: LCSD	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 11:37:	00 AM	Prep Date:	6/8/202	l
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
Boron	0.200	0.0300	0.200	0	99.9	80	120	0.390	15
Sample ID: 2106027-04A SD	Batch ID: 100848		TestNo:	swe	6020B		Units:	mg/L	
SampType: SD	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 11:43:	00 AM	Prep Date:	6/8/202	I
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
Boron	0.0606	0.150	0	0.0516				16.0	20
Sample ID: 2106027-04A PDS	Batch ID: 100848		TestNo:	swe	6020B		Units:	mg/L	
SampType: PDS	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 12:03:0	00 PM	Prep Date:	6/8/202	I
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
Boron	0.259	0.0300	0.200	0.0516	104	75	125		
Sample ID: 2106027-04A MS	Batch ID: 100848		TestNo:	swe	6020B		Units:	mg/L	
SampType: MS	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 12:05:0	00 PM	Prep Date:	6/8/202	I
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
Boron	0.262	0.0300	0.200	0.0516	105	75	125		
Sample ID: 2106027-04A MSD	Batch ID: 100848		TestNo:	SWe	6020B	_	Units:	mg/L	
SampType: MSD	Run ID: ICP-MS4	_210609A	Analysis	s Date: 6/9/2	2021 12:07:	00 PM	Prep Date:	6/8/202	I

Qualifiers: Analyte detected in the associated Method Blank В

> J Analyte detected between MDL and RL

Not Detected at the Method Detection Limit ND

Result

0.262

RL

0.0300

Reporting Limit

Analyte

Boron

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

Ref Val

0.0516

Page 2 of 10

75

LowLimit HighLimit %RPD RPDLimit Qual

0.115

15

125

R RPD outside accepted control limits

%REC

105

S Spike Recovery outside control limits

Parameter not NELAP certified

SPK value

0.200

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5 **RunID:** ICP-MS4 210609A

Project:	Luminai	nt - MLSES	CCR PDP	-5			Kunii	<i>)</i> ; 1	1CP-MIS4_210009A				
Sample ID: I	CV-210609	Batch ID:	R115738		TestNo	SW	V6020B		Units:	mg/l	_		
SampType: I	CV	Run ID:	ICP-MS4	_210609A	Analysis	s Date: 6/9	/2021 10:34:0	00 AM	Prep Date):			
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual		
Boron			0.102	0.0300	0.100	0	102	90	110				
Calcium			2.34	0.300	2.50	0	93.5	90	110				
Sample ID: L	.CVL-210609	Batch ID:	R115738		TestNo:	: SW	V6020B		Units:	mg/l			
SampType: L	.CVL	Run ID:	ICP-MS4	_210609A	Analysis	s Date: 6/9)/2021 10:48:	00 AM	Prep Date):			
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual		
Boron			0.0216	0.0300	0.0200	0	108	80	120				
Calcium			0.0810	0.300	0.100	0	81.0	80	120				
Sample ID: C	CV1-210609	Batch ID:	R115738		TestNo:	: SW	V6020B		Units:	mg/l	_		
SampType: C	ccv	Run ID:	ICP-MS4	_210609A	Analysis	s Date: 6/9)/2021 12:09:	00 PM	Prep Date):			
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual		
Boron			0.207	0.0300	0.200	0	104	90	110				
Calcium			4.78	0.300	5.00	0	95.6	90	110				
Sample ID: C	CV2-210609	Batch ID:	R115738		TestNo:	: SW	V6020B		Units:	mg/l	_		
SampType: C	ccv	Run ID:	ICP-MS4	_210609A	Analysis	s Date: 6/9)/2021 12:32:0	00 PM	Prep Date):			
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual		
Boron			0.207	0.0300	0.200	0	103	90	110				
Calcium			4.76	0.300	5.00	0	95.2	90	110				
Sample ID: C	CV3-210609	Batch ID:	R115738		TestNo:	SW	V6020B		Units:	mg/l	_		
SampType: C	ccv	Run ID:	ICP-MS4	_210609A	Analysis	s Date: 6/9)/2021 12:44:0	00 PM	Prep Date):			
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual		
Boron			0.214	0.0300	0.200	0	107	90	110				

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits Parameter not NELAP certified

Page 3 of 10

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

RunID: ICP-MS5_210428A

Sample ID: DCS2-100323	Batch ID:			TestNo		V6020B		Units:	mg/	
SampType: DCS2 Analyte	Run ID:	Result	5_210428A RL	Analys SPK value	is Date: 4/2 Ref Val	28/2021 10:53 %REC		Prep Date		7/2021 RPDLimit Qual
Calcium		0.302	0.300	0.300	0	101	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 4 of 10

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: Golder

ANALYTICAL QC SUMMARY REPORT

Work Order: 2106027

Project: Luminant - MLSES CCR PDP-5 RunID: ICP-MS5_210609A

The QC data in batch 100848 applies to the following samples: 2106027-01A, 2106027-02A, 2106027-03A, 2106027-04A, 2106027-05A, 2106027-
D6A 2106027-07A 2106027-08A 2106027-09A 2106027-10A

00/1/2100021 01/1/2100021 01	o, i, 2100021	00/1, 2100	021 1071							
Sample ID: MB-100848	Batch ID:	100848		TestNo:	SW	6020B		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 10:42:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		<0.100	0.300							
Sample ID: LCS-100848	Batch ID:	100848		TestNo:	SW	6020B		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 10:44:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		4.96	0.300	5.00	0	99.3	80	120		
Sample ID: LCSD-100848	Batch ID:	100848		TestNo:	SW	6020B		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 10:47:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		4.88	0.300	5.00	0	97.5	80	120	1.78	15
Sample ID: 2106027-04A SD	Batch ID:	100848		TestNo:	SW	6020B		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 10:55:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		2.45	1.50	0	2.37				3.47	20
Sample ID: 2106027-04A PDS	Batch ID:	100848		TestNo:	SW	6020B		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 11:20:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		7.04	0.300	5.00	2.37	93.5	75	125		
Sample ID: 2106027-04A MS	Batch ID:	100848		TestNo:	SW	6020B		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 11:23:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		7.17	0.300	5.00	2.37	96.0	75	125		
Sample ID: 2106027-04A MSD	Batch ID:	100848		TestNo	SW	6020B		Units:	mg/L	
SampType: MSD	Run ID:	ICP-MS	5_210609A	Analysis	s Date: 6/9/	2021 11:26:	00 AM	Prep Date:	6/8/202	21
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RF	PDLimit Qual
Calcium		7.39	0.300	5.00	2.37	101	75	125	3.11	15

Qualifiers:

B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 5 of 10

S Spike Recovery outside control limits

N Parameter not NELAP certified

30

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

RunID: ICP-MS5_210609A

Sample ID: ICV-210609	Batch ID:	R115743		TestNo	SW	6020B		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS5	_210609A	Analysi	s Date: 6/9/2	2021 10:28:	00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		2.37	0.300	2.50	0	94.9	90	110	
Sample ID: LCVL-210609	Batch ID:	R115743		TestNo	SW	6020B		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS5	_210609A	Analysi	s Date: 6/9/	2021 10:34:	00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		0.105	0.300	0.100	0	105	80	120	
Sample ID: CCV1-210609	Batch ID:	R115743		TestNo	SW	6020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS5	_210609A	Analysi	s Date: 6/9/	2021 11:28:	00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium		4.94	0.300	5.00	0	98.7	90	110	
Sample ID: CCV2-210609	Batch ID:	R115743		TestNo	swe	6020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS5	_210609A	Analysi	s Date: 6/9/ 2	2021 11:58:	00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 6 of 10

S Spike Recovery outside control limits

N Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5 **RunID:** IC2_210527A

Sample ID: DCS3-100738	Batch ID:	100738		TestNo	: E30	0		Units:	mg/	L	
SampType: DCS3	Run ID:	IC2_210	0527A	Analys	vsis Date: 5/27/2021 4:13:05 PM			Prep Date: 5/2		5/27/2021	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual	
Chloride		1.25	1.00	1.000	0	125	70	130	0	0	
Fluoride		0.408	0.400	0.4000	0	102	70	130	0	0	
Sulfate		3.03	3.00	3.000	0	101	70	130	0	0	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Page 7 of 10

Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

RunID: IC2_210607A

D 1 ID 100 100011	- Al -		11.2	
06B, 2106027-07B, 2106027-08B, 2106027-09B, 2106027-10B				
The QC data in batch 100841 applies to the following samples: 210602	7-01B, 2106027-02B	3, 2106027-03B, 210602	27-04B, 2106027-0)5B, 2106027-

Sample ID: MB-100841	Batch ID:	100841		TestNo:		E300		Units:	mg/L
SampType: MBLK	Run ID:	IC2_210607	A	Analysis	Date:	6/7/2021 11:03:3	BO AM	Prep Date	6/7/2021
Analyte		Result	RL	SPK value	Ref V	al %REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Chloride		<0.300	1.00						
Fluoride	•	<0.100	0.400						
Sulfate		<1.00	3.00						

Sample ID: LCSD-100841	Batch ID:	100841		TestNo:	E	300		Units:	mg/L	-
SampType: LCSD	Run ID:	IC2_210607	Ά	Analysis	s Date: 6	/7/2021 11:35:	30 AM	Prep Date:	6/7/2	021
Analyte		Result	RL	SPK value	Ref Va	I %REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Chloride		9.30	1.00	10.00	0	93.0	90	110	0.036	20
Fluoride		3.91	0.400	4.000	0	97.8	90	110	0.163	20
Sulfate		29.5	3.00	30.00	0	98.2	90	110	0.100	20

Sample ID: LCS-100841	Batch ID:	100841		TestNo:	Е	300		Units:	mg/L
SampType: LCS	Run ID:	IC2_210607	Ά	Analysis	s Date: 6 /	/7/2021 12:04:	59 PM	Prep Date:	6/7/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Chloride		9.30	1.00	10.00	0	93.0	90	110	
Fluoride		3.92	0.400	4.000	0	97.9	90	110	
Sulfate		29.5	3.00	30.00	0	98.3	90	110	

Sample ID: 2106027-02BMS	Batch ID:	100841		TestNo:	Е	300		Units:	mg/L
SampType: MS	Run ID:	IC2_210607	A	Analysis	Date: 6	/7/2021 4:53:08	PM	Prep Date:	6/7/2021
Analyte		Result	RL	SPK value	Ref Va	l %REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Chloride		218	10.0	200.0	18.28	99.8	90	110	
Fluoride		201	4.00	200.0	0	101	90	110	
Sulfate		536	30.0	200.0	350.2	92.7	90	110	

Sample ID: 2106027-02BMSD	Batch ID:	100841		TestNo	: E30	0		Units:	mg/l	_
SampType: MSD	Run ID:	IC2_210	0607A	Analys	is Date: 6/7/ 2	2021 5:09:0	8 PM	Prep Date	: 6/7/2	2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Chloride		218	10.0	200.0	18.28	99.9	90	110	0.045	20
Fluoride		202	4.00	200.0	0	101	90	110	0.333	20
Sulfate		536	30.0	200.0	350.2	93.0	90	110	0.117	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 10

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

RunID:	IC2 210607A
Kump.	1C4 41000/A

Troject.	Lammant	WILDED	cert bi 3	<u> </u>			Ttumi			071 x	
Sample ID:	ICV-210607	Batch ID:	R115719		TestNo:	E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC2_21060	7A	Analysis	Date: 6/7/20	21 10:31:	30 AM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit Qual
Chloride			24.7	1.00	25.00	0	98.9	90	110		
Fluoride			9.91	0.400	10.00	0	99.1	90	110		
Sulfate			77.7	3.00	75.00	0	104	90	110		
Sample ID:	CCV1-210607	Batch ID:	R115719		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_21060	7A	Analysis	Date: 6/7/20	21 3:41:4	5 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit Qual
Chloride			9.25	1.00	10.00	0	92.5	90	110		
Fluoride			3.87	0.400	4.000	0	96.7	90	110		
Sulfate			29.3	3.00	30.00	0	97.7	90	110		
Sample ID:	CCV2-210607	Batch ID:	R115719		TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC2_21060	7A	Analysis	Date: 6/7/20	21 6:29:0	8 PM	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit Qual
Chloride			9.37	1.00	10.00	0	93.7	90	110		
Fluoride			3.96	0.400	4.000	0	99.0	90	110		
Sulfate			29.9	3.00	30.00	0	99.6	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 9 of 10

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

RunID: WC_210604A

The QC data in batch 100830 applies to the following samples: 2106027-01B,	2106027-02B,	2106027-03B,	2106027-04B,	2106027-05B,	2106027-
06B 2106027-07B 2106027-08B 2106027-09B 2106027-10B					

Sample ID: I	MB-100830	Batch ID:	100830		TestNo:	M25	340C		Units:	mg/L	
SampType: I	MBLK	Run ID:	WC_21060	4A	Analysis	Date: 6/4/ 2	2021 5:00:0	O PM	Prep Date:	6/4/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissolv	red Solids (Residue,	Filtera	<10.0	10.0							
Sample ID: I	LCS-100830	Batch ID:	100830		TestNo:	M25	40C		Units:	mg/L	
SampType: I	LCS	Run ID:	WC_21060	4A	Analysis	Date: 6/4/ 2	2021 5:00:0	0 PM	Prep Date:	6/4/2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissolv	ed Solids (Residue,	Filtera	751	10.0	745.6	0	101	90	113		
Sample ID: :	2106009-01A-DUP	Batch ID:	100830		TestNo:	M25	40C		Units:	mg/L	
						0			OTHIO.	ilig/L	
SampType: I	DUP	Run ID:	WC_21060	4A			2021 5:00:0	0 PM	Prep Date:	6/4/2021	
SampType: I Analyte	DUP		WC_21060 Result	4A RL			2021 5:00:00 %REC			6/4/2021	
Analyte	DUP red Solids (Residue,				Analysis	Date: 6/4/ 2			Prep Date:	6/4/2021	
Analyte Total Dissolv			Result	RL	Analysis SPK value	Ref Val			Prep Date:	6/4/2021	DLimit Qual
Analyte Total Dissolv	red Solids (Residue, 2106009-02A-DUP	Filtera	Result	RL 50.0	Analysis SPK value 0 TestNo:	Ref Val 1115	%REC	LowLimi	Prep Date: t HighLimit %	6/4/2021 6RPD RPI 0.901	DLimit Qual
Analyte Total Dissolv Sample ID: 2	red Solids (Residue, 2106009-02A-DUP	Filtera Batch ID: Run ID:	Result 1110 100830	RL 50.0	Analysis SPK value 0 TestNo:	Ref Val 1115	%REC	LowLimi	Prep Date: t HighLimit % Units:	6/4/2021 6RPD RPI 0.901 mg/L 6/4/2021	DLimit Qual

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 10 of 10

Date: 11-Jun-21

CLIENT: Golder
Work Order: 2106027

MQL SUMMARY REPORT

Project: Luminant - MLSES CCR PDP-5

TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Chloride	0.300	1.00
Fluoride	0.100	0.400
Sulfate	1.00	3.00
TestNo: SW6020B	MDL	MQL
Analyte	mg/L	mg/L
Boron	0.0100	0.0300
	0.0100 0.100	0.0300 0.300
Boron		
Boron Calcium	0.100	0.300
Boron Calcium TestNo: M2540C	0.100 MDL	0.300 MQL

November 02, 2021

Will Vienne

Golder

2201 Double Creek Dr #4004

Round Rock, Texas 78664

TEL: (512) 671-3434

FAX (512) 671-3446 Order No.: 2110215

RE: Luminant - MLSES PDP 5

Dear Will Vienne:

DHL Analytical, Inc. received 11 sample(s) on 10/26/2021 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-21-27

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2110215	9
WorkOrderSampleSummary 2110215	10
PrepDatesReport 2110215	11
AnalyticalDatesReport 2110215	14
Analytical Report 2110215	17
AnalyticalQCSummaryReport 2110215	28
MQLSummaryReport 2110215	44

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

LUUUWANAL	Y 17	I C A L	*										cal.c														P/	٩GE	1	OF	1	
CLIENT: GOLDER		******				DA-	 ΓΕ:				10	-1	25-	21						LA	BOI	RAT	OR	ΥU	SE	ONI		TOL				٦
ADDRESS: TEXARKAN	VA, T	7				PC					1.			•						DH	IL W	VOR	ικο	RDI	ER:	#: <u>_</u>	2110	150	5			
PHONE: <u>512-195-8</u>	609	EMAIL:				1															-/	•		_	<u> </u>							٦
DATA REPORTED TO:		KEITH	STARGE	K_							N C	DR I	NAM	اE: لِـ	Nr.	MN	Aλ	T-	M								5 5					_
ADDITIONAL REPORT COI								PRO		_		7	16	<u> 34</u>	<u>4</u>						LLE	CTC			<u>7c</u>	<u>भंग</u>	<u> </u>	BE	2A41	<u>bn</u>		_
Authorize 5% surcharge	1	W=WATEI	R		DIMENT		PRE	SERV					<u>_</u>					2.1	L SIS		- - - - -		اا		٦,	$\frac{1}{2}$						
for TRRP report?	Lab	L=LIQUID		P=PAI			ı		l l	DI		[092	D 100				ST 827	0 0	MET		TY C		EEB		EASE	NICE.						İ
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	Si			etat	R	ES	8 001		. .			9- P.E	3 8270	DISS		ALINI	Ш	LS .	Ž Š	Lek G	5	۵					
	Only	SO=SOLID		,		اڇّا			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	YESE	r.ks	MET	1006	624.1	C 625	PAH	<u>-1</u>	<u> </u>	808		AK	26		8 8	֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		<u>.</u>					ı
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	# of Containers	딛	HNO ₃	NaOH Zr	ICE KI UNPRESERVED KI	ANALYSES	ВТЕХ □ МТВЕ □ [МЕТНОВ 8260]	TPH 1005 TPH 1006 HOLD 1006	VOC 8260 □ VOC 624.1 □	SVOC 8270 □ SVOC 625.1 □	РАН 8270 □ НОЦБ РАН □	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 ☐ 608.3 ☐ PCB 8270 ☐ 625.1 ☐	METALS 6020 ☐ 200.8 ☐ DISS. METALS ☐	RCRA 8 🗆 TX11 🗆	PH□ HEX CHROM□ ALKALINITY COD□	ANIONS 300 9056	TCLP-SVOC □ VOC □ PEST □ HERB □	TCLP-METALS RCRA 8 TX-11 Pb	RCILLIGN IL DGAS IL OIL&GREASE IL	total motal Cyanibe	C 204	+	FIE	LD NC	OTES	
MW-17A	01	10-21-21	VER 15	35	P	2		X	Ī	N					Ī			Ť	Ī	Ì	X	Ť	T		古	尔	(X		Ca,C	d Al	Fo	ᆿ
mw-17B	02	10-21-21		W	P'	2		X		冈				1		П		\top			X	T			75	ŻŻ	Ìχ		Ma. d	la. Ni	Se	
MW-6R	03	10-21-21		W	P	2		X		X								T			X				亏	ZÍX	(<u> </u>		Mg, M	3. K		
MW-5	04	10-22-21		W	b .	222		双		又				1							X		T		7		(X	T				П
MW-15A	05	10-22-21		W	P	2		X	T	X											X	T	T		T	XX	(区			,		
MW-16A	06			W	P	2	·	X	T	X											X				下	XX	XI)					٦
MW-16B	97	10-22-21	1025	W	P	22222		X		X											X				了		<u>X</u> []					
MW-20A	20	10-22-2(1130	W	P	2	•	\angle		X											X				万	XX						
MW-20B	09	10-22-21	1230	W	P	2		X X		XXX											X				oxdot	XX		,				
MW-1		10-22-21		W	P	2		X		X				\perp							X						(1					
DVP-1	11	10-22-21	1340	W	P	2		X		X				\perp						$oldsymbol{ol}}}}}}}}}}}}}}}}}$	X					()		$oxed{oxed}$				
						Ш		_	_					_	_		\perp	_	_	_	Ш			┸	4	\bot	_					
						Ш	_		\bot	Ш				\perp	\perp	Ш			\perp		Ш	4	\perp	_	\bot	\bot	丄		<u> </u>			_
						\sqcup	_			Ш				_	<u> </u>			4		_	Ш	\dashv	_	\perp	\bot	\bot	\bot	<u> </u>	<u> </u>			\Box
			· ·			$\perp \downarrow$	_	_	_	\perp								_ _		_	Ш		_	\perp	\bot	\bot	丄	↓_				
		ļ:								Ш					<u> </u>			\perp							\perp	<u></u>	丄		<u></u>			
Relinquished By: (Sign)			DATE/TIME -25-2 DATE/TIME	183	Recei	Q E	x				(CA	ALL I	I ARO	FOF	RU:	SH)		RECE	ORAT IVIN	ORY G TE	USE MP (ONI °C):	LY ,	<u>3.</u>	0				THE	ERM #:	78	
Relinquished By: (Sign)		10/26/	DATE/TIME	158	Recei	ved by	<i>r</i> :			RL	JSH-		AY□ JSH-3			DAY	′□		CUS	TOD	Y SE	ALS:		BR	OKE	N	אר	ITAC	T 🗆 N	IOT US	ED	
Relinquished By: (Sign)			DATE/TIME			ved by	<i>r</i> :				NOI JE D	RMA	AL 🏋			R□		CA	RRIE	R:	□ LS	io '	-				JPS VERE		COURIER	≀ □ 0	OTHER	₹
□ D	HL DIS	POSAL @ !	5.00 each		☐ Retui	n								***************************************				-				DH							2021			_

161N ID:GGGA (512) 671-3434 GOLDER ASSOCIATES 2201 DOUBLE CREEK DR STE 4004

BILL THIRD PARTY

DHL ANALYTICAL LABS

2300 DOUBLE CREEK DR

ROUND ROCK TX 78664

TRK# 2853 4269 2338

TUE - 26 OCT 10:30A PRIORITY OVERNIGHT

A8 BSMA

78664 TX-US AUS

2338 10.26

DATE

10-25-21

Sample Receipt Checklist Client Name Golder Date Received: 10/26/2021 Work Order Number 2110215 Received by: EL Checklist completed by: 10/26/2021 Reviewed by 10/26/2021 Date Initials Date Carrier name: FedEx 1day Yes 🗸 Shipping container/cooler in good condition? No 🗌 Not Present Yes 🗸 Custody seals intact on shippping container/cooler? No 🗌 Not Present No 🗌 Custody seals intact on sample bottles? Yes Not Present Yes 🗸 No 🗌 Chain of custody present? Yes 🗹 No 🗌 Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Yes 🗸 No Samples in proper container/bottle? Yes 🗸 Sample containers intact? No 🗍 Sufficient sample volume for indicated test? No Yes All samples received within holding time? No 🔙 3.0 °C Container/Temp Blank temperature in compliance? Yes 🗸 No 🗌 No No VOA vials submitted Yes Water - VOA vials have zero headspace? Water - pH<2 acceptable upon receipt? Yes 🗸 No 🗌 LOT# No Adjusted? Checked by NA 🗹 Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? No 🗌 Yes LOT# Adjusted? Checked by Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted Contacted by: Regarding: Comments:

Page 1 of 1

Corrective Action:

v

Lab	orat	ory Name: DHL Analytical, Inc.						
		ory Review Checklist: Reportable Data						
			RC Date: 11/2/2021					
Revie	wer I	Name: Angie O'Donnell Lai	aboratory Work Order: 2110215					
Prep	Batcl	Number(s): See Prep Dates Report Ru	in Batch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
		Chain-of-Custody (C-O-C)						
R1	OI	1) Did samples meet the laboratory's standard conditions of sar		X				R1-01
R2	OI	2) Were all departures from standard conditions described in ar Sample and Quality Control (QC) Identification	n exception report?			X		
K2	OI	1) Are all field sample ID numbers cross-referenced to the labor	oratory ID numbers?	X				
		2) Are all laboratory ID numbers cross-referenced to the corres		X				
R3	OI	Test Reports						
		1) Were all samples prepared and analyzed within holding time		X				
		2) Other than those results < MQL, were all other raw values by	pracketed by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?4) Were all analyte identifications checked by a peer or supervi	ia ang	X				
		5) Were sample detection limits reported for all analytes not de		X				
		6) Were all results for soil and sediment samples reported on a		21		X		
		7) Were % moisture (or solids) reported for all soil and sedimen				X		
		8) Were bulk soils/solids samples for volatile analysis extracted	d with methanol per EPA Method 5035?			X		
		9) If required for the project, TICs reported?				X		
R4	О	Surrogate Recovery Data				V		
		 Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the l 	laboratory OC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples	laboratory QC minus:			Λ		
110		1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical pro	ocess, including preparation and, if	X				
		applicable, cleanup procedures? 4) Were blank concentrations < MDL?		X				
1		5) For analyte(s) detected in a blank sample, was the concentra	ation unadjusted for sample specific	Λ				
		factors, in all associated field samples, greater than 10 times the				X		
R6	OI	Laboratory Control Samples (LCS):	•					
		1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure	e, including prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?4) Were LCS (and LCSD, if applicable) %Rs within the laborate	atory OC limits?	X				
		5) Does the detectability data document the laboratory's capabi						
		to calculate the SDLs?	into to detect the edges at the NIBE asea	X				
		6) Was the LCSD RPD within QC limits (if applicable)?		X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data						
		1) Were the project/method specified analytes included in the N 2) Were MS/MSD analyzed at the appropriate frequency?	MS and MSD?	X				
		3) Were MS (and MSD, if applicable) %Rs within the laborator	ory OC limits?	Λ	X			R7-03
		4) Were MS/MSD RPDs within laboratory QC limits?	2) Q :	X				117 00
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each ma		X				
		2) Were analytical duplicates analyzed at the appropriate frequency		X				
R9	OI	3) Were RPDs or relative standard deviations within the labora Method Quantitation Limits (MQLs):	atory QC limits?	X				
K)	OI	1) Are the MQLs for each method analyte included in the labor	ratory data package?	X				
		2) Do the MQLs correspond to the concentration of the lowest		X				
		3) Are unadjusted MQLs and DCSs included in the laboratory		X				
R10	OI							
		1) Are all known problems/anomalies/special conditions noted		X				
		2) Was applicable and available technology used to lower the S affects on the sample results?	SUL to minimize the matrix interference	X				
		3) Is the laboratory NELAC-accredited under the Texas Labora	atory Accreditation Program for the	**				
		analytes, matrices and methods associated with this laboratory		X				

		tory Name: DHL Analytical, Inc.	D 4					
		tory Review Checklist (continued): Supporting	•					
			C Date: 11/2/2021					
Revie	wer	Name: Angie O'Donnell Labo	oratory Work Order: 2110215					
Prep	Batc	h Number(s): See Prep Dates Report Run	Batch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA^3	NR^4	ER#5
S1	OI	Initial Calibration (ICAL)						
		1) Were response factors and/or relative response factors for each	analyta within OC limita?	v				
		2) Were percent RSDs or correlation coefficient criteria met?	analyte within QC limits?	X				
		3) Was the number of standards recommended in the method used	for all analytes?	X				
		4) Were all points generated between the lowest and highest stand		X				
		5) Are ICAL data available for all instruments used?	ard used to calculate the curve:	X				
		6) Has the initial calibration curve been verified using an appropri	ate second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CC		1				
~_	0.1	blank (CCB):	, v) and convinuing canoration					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-re	equired QC limits?	X				
		3) Was the ICAL curve verified for each analyte?		X				
		4) Was the absolute value of the analyte concentration in the inorg	ganic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?	,	X				
		2) Were ion abundance data within the method-required QC limits	s?	X				
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-requ	uired QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data)		X				
		2) Were data associated with manual integrations flagged on the ra	aw data?	X				
S6	О	Dual Column Confirmation						
		1) Did dual column confirmation results meet the method-required	d QC?			X		
S7	О	Tentatively Identified Compounds (TICs):						
	_	1) If TICs were requested, were the mass spectra and TIC data sub	pject to appropriate checks?			X		
S8	I	Interference Check Sample (ICS) Results:						
<u> </u>		1) Were percent recoveries within method QC limits?	1 4 1 11/4	X				
S9	1	Serial Dilutions, Post Digestion Spikes, and Method of Standar						
		1) Were percent differences, recoveries, and the linearity with method?	nin the QC limits specified in the	X				
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DCS	Ss?	X				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficie	ency tests or evaluation studies?	X				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtain	ed from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification docume	ented?	X				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – App		X				
~4-		2) Is documentation of the analyst's competency up-to-date and or		X				
S15	OI	Verification/Validation Documentation for Methods (NELAC	• '					
		1) Are all the methods used to generate the data documente applicable?	ed, verified, and validated, where	X				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method perfor	med?	X				
		I .			l .			

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on February 23-26, 2021. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director 11/02/21

Date

CLIENT: Golder

Project: Luminant - MLSES PDP 5 CASE NARRATIVE

Date: 02-Nov-21

Lab Order: 2110215

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis Method M2320 B - Alkalinity Analysis

Exception Report R1-01

The samples were received and log-in performed on 10/26/2021. A total of 11 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R7-03

For Anions Analysis, the recovery of Chloride for (each) the Matrix Spike and Matrix Spike Duplicate(s) (2110242-02, -03 MS/MSD) was below the method control limits. These are flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS. No further corrective action was taken.

Date: 02-Nov-21

CLIENT: Golder

Project: Luminant - MLSES PDP 5 Work Order Sample Summary

Lab Order: 2110215

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2110215-01	MW-17A		10/21/21 03:35 PM	10/26/2021
2110215-02	MW-17B		10/21/21 04:20 PM	10/26/2021
2110215-03	MW-6R		10/21/21 05:05 PM	10/26/2021
2110215-04	MW-5		10/22/21 07:55 AM	10/26/2021
2110215-05	MW-15A		10/22/21 08:45 AM	10/26/2021
2110215-06	MW-16A		10/22/21 09:35 AM	10/26/2021
2110215-07	MW-16B		10/22/21 10:25 AM	10/26/2021
2110215-08	MW-20A		10/22/21 11:30 AM	10/26/2021
2110215-09	MW-20B		10/22/21 12:30 PM	10/26/2021
2110215-10	MW-1		10/22/21 01:40 PM	10/26/2021
2110215-11	DUP-1		10/22/21 01:40 PM	10/26/2021

Lab Order: 2110215 Client: Golder

Project: Luminant - MLSES PDP 5

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2110215-01A	MW-17A	10/21/21 03:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-17A	10/21/21 03:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-01B	MW-17A	10/21/21 03:35 PM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-17A	10/21/21 03:35 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-17A	10/21/21 03:35 PM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
2110215-02A	MW-17B	10/21/21 04:20 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-17B	10/21/21 04:20 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-02B	MW-17B	10/21/21 04:20 PM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-17B	10/21/21 04:20 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-17B	10/21/21 04:20 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-17B	10/21/21 04:20 PM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
2110215-03A	MW-6R	10/21/21 05:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-6R	10/21/21 05:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-6R	10/21/21 05:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-03B	MW-6R	10/21/21 05:05 PM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-6R	10/21/21 05:05 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-6R	10/21/21 05:05 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-6R	10/21/21 05:05 PM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
2110215-04A	MW-5	10/22/21 07:55 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-5	10/22/21 07:55 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-5	10/22/21 07:55 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-04B	MW-5	10/22/21 07:55 AM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-5	10/22/21 07:55 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-5	10/22/21 07:55 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-5	10/22/21 07:55 AM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
2110215-05A	MW-15A	10/22/21 08:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-15A	10/22/21 08:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-05B	MW-15A	10/22/21 08:45 AM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572

Page 1 of 3

Lab Order: 2110215 Client: Golder

Project: Luminant - MLSES PDP 5

PREP DATES REPORT

ample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
110215-05B	MW-15A	10/22/21 08:45 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-15A	10/22/21 08:45 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-15A	10/22/21 08:45 AM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
10215-06A	MW-16A	10/22/21 09:35 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-16A	10/22/21 09:35 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-16A	10/22/21 09:35 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
10215-06B	MW-16A	10/22/21 09:35 AM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-16A	10/22/21 09:35 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-16A	10/22/21 09:35 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-16A	10/22/21 09:35 AM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
10215-07A	MW-16B	10/22/21 10:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-16B	10/22/21 10:25 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
10215-07B	MW-16B	10/22/21 10:25 AM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-16B	10/22/21 10:25 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-16B	10/22/21 10:25 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-16B	10/22/21 10:25 AM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
0215-08A	MW-20A	10/22/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-20A	10/22/21 11:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
10215-08B	MW-20A	10/22/21 11:30 AM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-20A	10/22/21 11:30 AM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-20A	10/22/21 11:30 AM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
10215-09A	MW-20B	10/22/21 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-20B	10/22/21 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-20B	10/22/21 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
0215-09B	MW-20B	10/22/21 12:30 PM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-20B	10/22/21 12:30 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-20B	10/22/21 12:30 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-20B	10/22/21 12:30 PM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570

Page 2 of 3

Lab Order: 2110215 Client: Golder

Project: Luminant - MLSES PDP 5

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2110215-10A	MW-1	10/22/21 01:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-1	10/22/21 01:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	MW-1	10/22/21 01:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-10B	MW-1	10/22/21 01:40 PM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	MW-1	10/22/21 01:40 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-1	10/22/21 01:40 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	MW-1	10/22/21 01:40 PM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570
2110215-11A	DUP-1	10/22/21 01:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	DUP-1	10/22/21 01:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
	DUP-1	10/22/21 01:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/27/21 09:40 AM	102576
2110215-11B	DUP-1	10/22/21 01:40 PM	Aqueous	M2320 B	Alkalinity Preparation	10/27/21 09:17 AM	102572
	DUP-1	10/22/21 01:40 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	DUP-1	10/22/21 01:40 PM	Aqueous	E300	Anion Preparation	10/28/21 10:01 AM	102594
	DUP-1	10/22/21 01:40 PM	Aqueous	M2540C	TDS Preparation	10/27/21 08:55 AM	102570

Lab Order: 2110215 Client: Golder

Project: Luminant - MLSES PDP 5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2110215-01A	MW-17A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:03 AM	ICP-MS5_211028A
	MW-17A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:08 PM	ICP-MS4_211028A
2110215-01B	MW-17A	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 12:07 PM	TITRATOR_211027A
	MW-17A	Aqueous	E300	Anions by IC method - Water	102594	1	10/28/21 11:04 PM	IC2_211028A
	MW-17A	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-02A	MW-17B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:12 PM	ICP-MS4_211028A
	MW-17B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:15 AM	ICP-MS5_211028A
2110215-02B	MW-17B	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 12:11 PM	TITRATOR_211027A
	MW-17B	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 04:24 PM	IC2_211028A
	MW-17B	Aqueous	E300	Anions by IC method - Water	102594	1	10/28/21 11:20 PM	IC2_211028A
	MW-17B	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-03A	MW-6R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	50	10/28/21 02:14 PM	ICP-MS4_211028A
	MW-6R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:18 AM	ICP-MS5_211028A
	MW-6R	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	50	10/28/21 12:18 PM	ICP-MS5_211028A
2110215-03B	MW-6R	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 12:18 PM	TITRATOR_211027A
	MW-6R	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 12:40 AM	IC2_211028A
	MW-6R	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 04:40 PM	IC2_211028A
	MW-6R	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-04A	MW-5	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:52 PM	ICP-MS4_211028A
	MW-5	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:21 AM	ICP-MS5_211028A
	MW-5	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	5	10/28/21 12:21 PM	ICP-MS5_211028A
2110215-04B	MW-5	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 12:42 PM	TITRATOR_211027A
	MW-5	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 04:56 PM	IC2_211028A
	MW-5	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 12:56 AM	IC2_211028A
	MW-5	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-05A	MW-15A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	5	10/28/21 02:18 PM	ICP-MS4_211028A
	MW-15A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:23 AM	ICP-MS5_211028A
110215-05B	MW-15A	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 12:45 PM	TITRATOR 211027A

Page 1 of 3

Lab Order: 2110215 Client: Golder

Project: Luminant - MLSES PDP 5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2110215-05B	MW-15A	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 05:12 PM	IC2_211028A
	MW-15A	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 01:12 AM	IC2_211028A
	MW-15A	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-06A	MW-16A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	5	10/28/21 02:20 PM	ICP-MS4_211028A
	MW-16A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:26 AM	ICP-MS5_211028A
	MW-16A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	20	10/28/21 12:26 PM	ICP-MS5_211028A
2110215-06B	MW-16A	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 01:02 PM	TITRATOR_211027A
	MW-16A	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 01:28 AM	IC2_211028A
	MW-16A	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 05:28 PM	IC2_211028A
	MW-16A	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-07A	MW-16B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:22 PM	ICP-MS4_211028A
	MW-16B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:28 AM	ICP-MS5_211028A
110215-07B	MW-16B	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 01:05 PM	TITRATOR_211027A
	MW-16B	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 01:44 AM	IC2_211028A
	MW-16B	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 05:44 PM	IC2_211028A
	MW-16B	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
110215-08A	MW-20A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:44 AM	ICP-MS5_211028A
	MW-20A	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:24 PM	ICP-MS4_211028A
2110215-08B	MW-20A	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 01:08 PM	TITRATOR_211027A
	MW-20A	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 02:00 AM	IC2_211028A
	MW-20A	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-09A	MW-20B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	5	10/28/21 12:28 PM	ICP-MS5_211028A
	MW-20B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:26 PM	ICP-MS4_211028A
	MW-20B	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:47 AM	ICP-MS5_211028A
110215-09B	MW-20B	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 01:13 PM	TITRATOR_211027A
	MW-20B	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 06:00 PM	IC2_211028A
	MW-20B	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 02:16 AM	IC2_211028A
	MW-20B	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C

Page 2 of 3

Lab Order: 2110215 Client: Golder

Project: Luminant - MLSES PDP 5

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2110215-10A	MW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:28 PM	ICP-MS4_211028A
	MW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:49 AM	ICP-MS5_211028A
	MW-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	5	10/28/21 12:31 PM	ICP-MS5_211028A
2110215-10B	MW-1	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 01:18 PM	TITRATOR_211027A
	MW-1	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 06:16 PM	IC2_211028A
	MW-1	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 02:32 AM	IC2_211028A
	MW-1	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C
2110215-11A	DUP-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 02:48 PM	ICP-MS4_211028A
	DUP-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	1	10/28/21 11:52 AM	ICP-MS5_211028A
	DUP-1	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	102576	5	10/28/21 12:33 PM	ICP-MS5_211028A
2110215-11B	DUP-1	Aqueous	M2320 B	Alkalinity	102572	1	10/27/21 01:36 PM	TITRATOR_211027A
	DUP-1	Aqueous	E300	Anions by IC method - Water	102594	10	10/28/21 06:32 PM	IC2_211028A
	DUP-1	Aqueous	E300	Anions by IC method - Water	102594	1	10/29/21 02:48 AM	IC2_211028A
	DUP-1	Aqueous	M2540C	Total Dissolved Solids	102570	1	10/27/21 03:05 PM	WC_211027C

CLIENT: Golder Client Sample ID: MW-17A

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-01

Project No: 19116344 **Collection Date:** 10/21/21 03:35 PM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.0350	0.0100	0.0300		mg/L	1	10/28/21 11:03 AM
Boron	0.380	0.0100	0.0300		mg/L	1	10/28/21 02:08 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:03 AM
Calcium	3.66	0.100	0.300		mg/L	1	10/28/21 11:03 AM
Iron	0.0734	0.0300	0.100	J	mg/L	1	10/28/21 11:03 AM
Magnesium	3.42	0.100	0.300		mg/L	1	10/28/21 11:03 AM
Manganese	0.0638	0.00300	0.0100		mg/L	1	10/28/21 11:03 AM
Nickel	0.00907	0.00300	0.0100	J	mg/L	1	10/28/21 11:03 AM
Potassium	2.13	0.100	0.300		mg/L	1	10/28/21 11:03 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:03 AM
Sodium	14.6	0.100	0.300		mg/L	1	10/28/21 11:03 AM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	9.13	0.300	1.00		mg/L	1	10/28/21 11:04 PM
Sulfate	36.0	1.00	3.00		mg/L	1	10/28/21 11:04 PM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	14.1	10.0	20.0	J	mg/L @ pH 4.51	1	10/27/21 12:07 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	10/27/21 12:07 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	10/27/21 12:07 PM
Alkalinity, Total (As CaCO3)	14.1	10.0	20.0	J	mg/L @ pH 4.51	1	10/27/21 12:07 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	105	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 11

CLIENT: Golder Client Sample ID: MW-17B

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-02

Project No: 19116344 **Collection Date:** 10/21/21 04:20 PM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	< 0.0100	0.0100	0.0300		mg/L	1	10/28/21 11:15 AM
Boron	0.532	0.0100	0.0300		mg/L	1	10/28/21 02:12 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:15 AM
Calcium	22.6	0.100	0.300		mg/L	1	10/28/21 11:15 AM
Iron	1.94	0.0300	0.100		mg/L	1	10/28/21 11:15 AM
Magnesium	16.8	0.100	0.300		mg/L	1	10/28/21 11:15 AM
Manganese	0.0465	0.00300	0.0100		mg/L	1	10/28/21 11:15 AM
Nickel	0.00626	0.00300	0.0100	J	mg/L	1	10/28/21 11:15 AM
Potassium	4.93	0.100	0.300		mg/L	1	10/28/21 11:15 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:15 AM
Sodium	21.1	0.100	0.300		mg/L	1	10/28/21 11:15 AM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: BM
Chloride	41.5	0.300	1.00		mg/L	1	10/28/21 11:20 PM
Sulfate	69.5	1.00	3.00		mg/L	1	10/28/21 11:20 PM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	56.6	10.0	20.0		mg/L @ pH 4.49	1	10/27/21 12:11 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.49	1	10/27/21 12:11 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.49	1	10/27/21 12:11 PM
Alkalinity, Total (As CaCO3)	56.6	20.0	20.0		mg/L @ pH 4.49	1	10/27/21 12:11 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	265	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

 \boldsymbol{J} - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 11

CLIENT: Golder Client Sample ID: MW-6R

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-03

Project No: 19116344 **Collection Date:** 10/21/21 05:05 PM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.0418	0.0100	0.0300		mg/L	1	10/28/21 11:18 AM
Boron	15.1	0.500	1.50		mg/L	50	10/28/21 02:14 PM
Cadmium	0.000614	0.000300	0.00100	J	mg/L	1	10/28/21 11:18 AM
Calcium	172	5.00	15.0		mg/L	50	10/28/21 12:18 PM
Iron	0.597	0.0300	0.100		mg/L	1	10/28/21 11:18 AM
Magnesium	47.1	5.00	15.0		mg/L	50	10/28/21 12:18 PM
Manganese	0.0280	0.00300	0.0100		mg/L	1	10/28/21 11:18 AM
Nickel	0.0314	0.00300	0.0100		mg/L	1	10/28/21 11:18 AM
Potassium	13.2	0.100	0.300		mg/L	1	10/28/21 11:18 AM
Selenium	0.00509	0.00200	0.00500		mg/L	1	10/28/21 11:18 AM
Sodium	175	5.00	15.0		mg/L	50	10/28/21 12:18 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	160	3.00	10.0		mg/L	10	10/28/21 04:40 PM
Sulfate	734	10.0	30.0		mg/L	10	10/28/21 04:40 PM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	134	10.0	20.0		mg/L @ pH 4.51	1	10/27/21 12:18 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	10/27/21 12:18 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.51	1	10/27/21 12:18 PM
Alkalinity, Total (As CaCO3)	134	20.0	20.0		mg/L @ pH 4.51	1	10/27/21 12:18 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	1460	50.0	50.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 3 of 11

CLIENT: Golder Client Sample ID: MW-5

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-04

Project No: 19116344 **Collection Date:** 10/22/21 07:55 AM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.0213	0.0100	0.0300	J	mg/L	1	10/28/21 11:21 AM
Boron	0.133	0.0100	0.0300		mg/L	1	10/28/21 02:52 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:21 AM
Calcium	79.1	0.500	1.50		mg/L	5	10/28/21 12:21 PM
Iron	16.7	0.150	0.500		mg/L	5	10/28/21 12:21 PM
Magnesium	20.8	0.100	0.300		mg/L	1	10/28/21 11:21 AM
Manganese	0.0656	0.00300	0.0100		mg/L	1	10/28/21 11:21 AM
Nickel	<0.00300	0.00300	0.0100		mg/L	1	10/28/21 11:21 AM
Potassium	3.08	0.100	0.300		mg/L	1	10/28/21 11:21 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:21 AM
Sodium	48.5	0.500	1.50		mg/L	5	10/28/21 12:21 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	34.1	0.300	1.00		mg/L	1	10/29/21 12:56 AM
Sulfate	<1.00	1.00	3.00		mg/L	1	10/29/21 12:56 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	363	10.0	20.0		mg/L @ pH 4.53	1	10/27/21 12:42 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.53	1	10/27/21 12:42 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.53	1	10/27/21 12:42 PM
Alkalinity, Total (As CaCO3)	363	20.0	20.0		mg/L @ pH 4.53	1	10/27/21 12:42 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	454	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 11

CLIENT: Golder Client Sample ID: MW-15A

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-05

Project No: 19116344 **Collection Date:** 10/22/21 08:45 AM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.240	0.0100	0.0300		mg/L	1	10/28/21 11:23 AM
Boron	0.553	0.0500	0.150		mg/L	5	10/28/21 02:18 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:23 AM
Calcium	16.1	0.100	0.300		mg/L	1	10/28/21 11:23 AM
Iron	0.226	0.0300	0.100		mg/L	1	10/28/21 11:23 AM
Magnesium	14.7	0.100	0.300		mg/L	1	10/28/21 11:23 AM
Manganese	0.00557	0.00300	0.0100	J	mg/L	1	10/28/21 11:23 AM
Nickel	0.0110	0.00300	0.0100		mg/L	1	10/28/21 11:23 AM
Potassium	3.65	0.100	0.300		mg/L	1	10/28/21 11:23 AM
Selenium	0.00611	0.00200	0.00500		mg/L	1	10/28/21 11:23 AM
Sodium	19.8	0.100	0.300		mg/L	1	10/28/21 11:23 AM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	12.8	0.300	1.00		mg/L	1	10/29/21 01:12 AM
Sulfate	118	1.00	3.00		mg/L	1	10/29/21 01:12 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	14.6	10.0	20.0	J	mg/L @ pH 4.5	1	10/27/21 12:45 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 12:45 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 12:45 PM
Alkalinity, Total (As CaCO3)	14.6	10.0	20.0	J	mg/L @ pH 4.5	1	10/27/21 12:45 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	237	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 5 of 11

CLIENT: Golder Client Sample ID: MW-16A

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-06

Project No: 19116344 **Collection Date:** 10/22/21 09:35 AM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.0297	0.0100	0.0300	J	mg/L	1	10/28/21 11:26 AM
Boron	1.26	0.0500	0.150		mg/L	5	10/28/21 02:20 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:26 AM
Calcium	252	2.00	6.00		mg/L	20	10/28/21 12:26 PM
Iron	14.8	0.600	2.00		mg/L	20	10/28/21 12:26 PM
Magnesium	25.9	2.00	6.00		mg/L	20	10/28/21 12:26 PM
Manganese	0.570	0.00300	0.0100		mg/L	1	10/28/21 11:26 AM
Nickel	<0.00300	0.00300	0.0100		mg/L	1	10/28/21 11:26 AM
Potassium	7.48	0.100	0.300		mg/L	1	10/28/21 11:26 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:26 AM
Sodium	19.3	0.100	0.300		mg/L	1	10/28/21 11:26 AM
ANIONS BY IC METHOD - WATER		E3	00				Analyst: BM
Chloride	6.94	0.300	1.00		mg/L	1	10/29/21 01:28 AM
Sulfate	544	10.0	30.0		mg/L	10	10/28/21 05:28 PM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	283	10.0	20.0		mg/L @ pH 4.53	1	10/27/21 01:02 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.53	1	10/27/21 01:02 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.53	1	10/27/21 01:02 PM
Alkalinity, Total (As CaCO3)	283	20.0	20.0		mg/L @ pH 4.53	1	10/27/21 01:02 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	1140	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 6 of 11

CLIENT: Golder Client Sample ID: MW-16B

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-07

Project No: 19116344 **Collection Date:** 10/22/21 10:25 AM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.0255	0.0100	0.0300	J	mg/L	1	10/28/21 11:28 AM
Boron	0.0382	0.0100	0.0300		mg/L	1	10/28/21 02:22 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:28 AM
Calcium	3.86	0.100	0.300		mg/L	1	10/28/21 11:28 AM
Iron	0.584	0.0300	0.100		mg/L	1	10/28/21 11:28 AM
Magnesium	2.98	0.100	0.300		mg/L	1	10/28/21 11:28 AM
Manganese	0.0145	0.00300	0.0100		mg/L	1	10/28/21 11:28 AM
Nickel	0.00432	0.00300	0.0100	J	mg/L	1	10/28/21 11:28 AM
Potassium	2.19	0.100	0.300		mg/L	1	10/28/21 11:28 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:28 AM
Sodium	11.7	0.100	0.300		mg/L	1	10/28/21 11:28 AM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	6.31	0.300	1.00		mg/L	1	10/29/21 01:44 AM
Sulfate	5.36	1.00	3.00		mg/L	1	10/29/21 01:44 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	35.8	10.0	20.0		mg/L @ pH 4.47	1	10/27/21 01:05 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.47	1	10/27/21 01:05 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.47	1	10/27/21 01:05 PM
Alkalinity, Total (As CaCO3)	35.8	20.0	20.0		mg/L @ pH 4.47	1	10/27/21 01:05 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	121	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 7 of 11

CLIENT: Golder Client Sample ID: MW-20A

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-08

Project No: 19116344 **Collection Date:** 10/22/21 11:30 AM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.222	0.0100	0.0300		mg/L	1	10/28/21 11:44 AM
Boron	0.0541	0.0100	0.0300		mg/L	1	10/28/21 02:24 PM
Cadmium	< 0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:44 AM
Calcium	3.92	0.100	0.300		mg/L	1	10/28/21 11:44 AM
Iron	< 0.0300	0.0300	0.100		mg/L	1	10/28/21 11:44 AM
Magnesium	2.26	0.100	0.300		mg/L	1	10/28/21 11:44 AM
Manganese	0.00900	0.00300	0.0100	J	mg/L	1	10/28/21 11:44 AM
Nickel	0.00459	0.00300	0.0100	J	mg/L	1	10/28/21 11:44 AM
Potassium	1.11	0.100	0.300		mg/L	1	10/28/21 11:44 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:44 AM
Sodium	11.0	0.100	0.300		mg/L	1	10/28/21 11:44 AM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	12.3	0.300	1.00		mg/L	1	10/29/21 02:00 AM
Sulfate	26.9	1.00	3.00		mg/L	1	10/29/21 02:00 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:08 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:08 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:08 PM
Alkalinity, Total (As CaCO3)	<20.0	20.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:08 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	132	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 8 of 11

CLIENT: Golder Client Sample ID: MW-20B

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-09

Project No: 19116344 **Collection Date:** 10/22/21 12:30 PM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	< 0.0100	0.0100	0.0300		mg/L	1	10/28/21 11:47 AM
Boron	0.0436	0.0100	0.0300		mg/L	1	10/28/21 02:26 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:47 AM
Calcium	16.7	0.100	0.300		mg/L	1	10/28/21 11:47 AM
Iron	0.395	0.0300	0.100		mg/L	1	10/28/21 11:47 AM
Magnesium	9.91	0.100	0.300		mg/L	1	10/28/21 11:47 AM
Manganese	0.00848	0.00300	0.0100	J	mg/L	1	10/28/21 11:47 AM
Nickel	0.00408	0.00300	0.0100	J	mg/L	1	10/28/21 11:47 AM
Potassium	2.96	0.100	0.300		mg/L	1	10/28/21 11:47 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:47 AM
Sodium	25.3	0.500	1.50		mg/L	5	10/28/21 12:28 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	13.6	0.300	1.00		mg/L	1	10/29/21 02:16 AM
Sulfate	76.4	1.00	3.00		mg/L	1	10/29/21 02:16 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	53.6	10.0	20.0		mg/L @ pH 4.48	1	10/27/21 01:13 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.48	1	10/27/21 01:13 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.48	1	10/27/21 01:13 PM
Alkalinity, Total (As CaCO3)	53.6	20.0	20.0		mg/L @ pH 4.48	1	10/27/21 01:13 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	252	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 9 of 11

CLIENT: Golder Client Sample ID: MW-1

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-10

Project No: 19116344 **Collection Date:** 10/22/21 01:40 PM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	< 0.0100	0.0100	0.0300		mg/L	1	10/28/21 11:49 AM
Boron	0.0325	0.0100	0.0300		mg/L	1	10/28/21 02:28 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:49 AM
Calcium	11.6	0.100	0.300		mg/L	1	10/28/21 11:49 AM
Iron	<0.0300	0.0300	0.100		mg/L	1	10/28/21 11:49 AM
Magnesium	6.01	0.100	0.300		mg/L	1	10/28/21 11:49 AM
Manganese	0.00406	0.00300	0.0100	J	mg/L	1	10/28/21 11:49 AM
Nickel	0.00307	0.00300	0.0100	J	mg/L	1	10/28/21 11:49 AM
Potassium	1.82	0.100	0.300		mg/L	1	10/28/21 11:49 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:49 AM
Sodium	35.0	0.500	1.50		mg/L	5	10/28/21 12:31 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	14.4	0.300	1.00		mg/L	1	10/29/21 02:32 AM
Sulfate	58.2	1.00	3.00		mg/L	1	10/29/21 02:32 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	53.8	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:18 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:18 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:18 PM
Alkalinity, Total (As CaCO3)	53.8	20.0	20.0		mg/L @ pH 4.5	1	10/27/21 01:18 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	241	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 10 of 11

CLIENT: Golder Client Sample ID: DUP-1

Project: Luminant - MLSES PDP 5 Lab ID: 2110215-11

Project No: 19116344 **Collection Date:** 10/22/21 01:40 PM

Lab Order: 2110215 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60)20B				Analyst: SP
Aluminum	0.0144	0.0100	0.0300	J	mg/L	1	10/28/21 11:52 AM
Boron	0.0280	0.0100	0.0300	J	mg/L	1	10/28/21 02:48 PM
Cadmium	<0.000300	0.000300	0.00100		mg/L	1	10/28/21 11:52 AM
Calcium	12.0	0.100	0.300		mg/L	1	10/28/21 11:52 AM
Iron	<0.0300	0.0300	0.100		mg/L	1	10/28/21 11:52 AM
Magnesium	6.07	0.100	0.300		mg/L	1	10/28/21 11:52 AM
Manganese	0.00490	0.00300	0.0100	J	mg/L	1	10/28/21 11:52 AM
Nickel	0.00315	0.00300	0.0100	J	mg/L	1	10/28/21 11:52 AM
Potassium	1.88	0.100	0.300		mg/L	1	10/28/21 11:52 AM
Selenium	<0.00200	0.00200	0.00500		mg/L	1	10/28/21 11:52 AM
Sodium	35.7	0.500	1.50		mg/L	5	10/28/21 12:33 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: BM
Chloride	14.3	0.300	1.00		mg/L	1	10/29/21 02:48 AM
Sulfate	57.9	1.00	3.00		mg/L	1	10/29/21 02:48 AM
ALKALINITY		M232	20 B				Analyst: BM
Alkalinity, Bicarbonate (As CaCO3)	55.3	10.0	20.0		mg/L @ pH 4.49	1	10/27/21 01:36 PM
Alkalinity, Carbonate (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.49	1	10/27/21 01:36 PM
Alkalinity, Hydroxide (As CaCO3)	<10.0	10.0	20.0		mg/L @ pH 4.49	1	10/27/21 01:36 PM
Alkalinity, Total (As CaCO3)	55.3	20.0	20.0		mg/L @ pH 4.49	1	10/27/21 01:36 PM
TOTAL DISSOLVED SOLIDS		M25	40C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	234	10.0	10.0		mg/L	1	10/27/21 03:05 PM

Qualifiers: ND - Not Detected at the SDL

 \boldsymbol{J} - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

 $\ensuremath{\mathrm{C}}$ - Sample Result or QC discussed in Case Narrative

Date:

02-Nov-21

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 11 of 11

CLIENT: Golder **Work Order:** 2110215

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: ICP-MS4_210803A

Date: 02-Nov-21

Sample ID: DCS4-101483 SampType: DCS4	Batch ID: Run ID:		4_210803A	TestNo Analys		N6020B 3/2021 1:27:00) PM	Units: Prep Date	mg/ e: 8/2/		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Q	≀ual
Boron		0.0315	0.0300	0.0300	0	105	70	130	0	0	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

etion Limit Page 1 of 16 accepted control limits

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: ICP-MS4_211028A

i rojeci.		- MILSES I						-	O1 1110 1_1		-
	a in batch 102576 ap 15-07A, 2110215-08 <i>P</i>					215-02A, 2	110215-03A	, 2110215	5-04A, 21102	15-05A, 2	2110215-
Sample ID:	MB-102576	Batch ID:	102576		TestNo:	swe	6020B		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:00	:00 PM	Prep Date:	10/27/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron		<	:0.0100	0.0300							
Sample ID:	LCS-102576	Batch ID:	102576		TestNo:	swe	6020B		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:02	:00 PM	Prep Date:	10/27/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron			0.199	0.0300	0.200	0	99.6	80	120		
Sample ID:	LCSD-102576	Batch ID:	102576		TestNo:	swe	6020B		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:04	:00 PM	Prep Date:	10/27/2	.021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron			0.197	0.0300	0.200	0	98.5	80	120	1.14	15
Sample ID:	2110215-01A SD	Batch ID:	102576		TestNo:	swe	6020B		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:10	:00 PM	Prep Date:	10/27/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron			0.400	0.150	0	0.380				5.22	20
Sample ID:	2110215-01A PDS	Batch ID:	102576		TestNo:	SW	6020B		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:30	:00 PM	Prep Date:	10/27/2	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron			0.533	0.0300	0.200	0.380	76.7	75	125		
Sample ID:	2110215-01A MS	Batch ID:	102576		TestNo:	swe	6020B		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:32	:00 PM	Prep Date:	10/27/2	.021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron			0.556	0.0300	0.200	0.380	88.3	75	125		
Sample ID:	2110215-01A MSD	Batch ID:	102576		TestNo:	SW	6020B		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS4	_211028A	Analysis	Date: 10/2	8/2021 2:34	:00 PM	Prep Date:	10/27/2	.021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	PDLimit Qual
Boron			0.557	0.0300	0.200	0.380	88.4	75	125	0.020	15

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 2 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: ICP-MS4_211028A

Sample ID: ICV-211028	Batch ID:	R117749		TestNo:	SW	6020B		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS4_	_211028A	Analysis	Date: 10/2	8/2021 12:4	1:00 P	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.109	0.0300	0.100	0	109	90	110	
Sample ID: LCVL-211028	Batch ID:	R117749		TestNo:	SW	6020B		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4_	_211028A	Analysis	Date: 10/2	8/2021 12:4	19:00 P	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.0220	0.0300	0.0200	0	110	80	120	
Sample ID: CCV1-211028	Batch ID:	R117749		TestNo:	SW	6020B		Units:	mg/L
SampType: CCV									
SampType: CCV	Run ID:	ICP-MS4_	_211028A	Analysis	Date: 10/2	8/2021 2:41	:00 PM	Prep Date	:
Analyte	Run ID:	ICP-MS4_ Result	. 211028A RL	Analysis SPK value	Ref Val	%REC		<u> </u>	: %RPD RPDLimit Qual
	Run ID:		-					<u> </u>	
Analyte	Run ID: Batch ID:	Result 0.211	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	
Analyte		Result 0.211	RL 0.0300	SPK value 0.200 TestNo:	Ref Val	%REC 106	LowLimi 90	it HighLimit	%RPD RPDLimit Qual
Analyte Boron Sample ID: CCV2-211028	Batch ID:	Result 0.211 R117749	RL 0.0300	SPK value 0.200 TestNo:	Ref Val	%REC 106 6020B	LowLimi 90 9:00 PM	t HighLimit 110 Units: Prep Date	%RPD RPDLimit Qual

Qualifiers: B

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 3 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID:	ICP-MS5	210803A
--------	---------	---------

Project: Luminai	nt - MLSES PDP 5				Kullii	<i>)</i> ; 1	CP-W155_2	<u> </u>	SA
Sample ID: DCS1-101483	Batch ID: 101483		TestNo	swe	6020B		Units:	mg/L	ı
SampType: DCS	Run ID: ICP-MS5	_210803A	Analysi	s Date: 8/3/	2021 11:08:	00 AM	Prep Date:	8/2/2	021
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Aluminum	0.0215	0.0300	0.0200	0	108	70	130	0	0
Cadmium	0.000583	0.00100	0.000500	0	117	70	130	0	0
Sample ID: DCS2-101483	Batch ID: 101483		TestNo	SW	6020B		Units:	mg/L	ı
SampType: DCS2	Run ID: ICP-MS5	_210803A	Analysi	s Date: 8/3/	2021 11:11:	00 AM	Prep Date:	8/2/2	021
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Calcium	0.277	0.300	0.300	0	92.2	70	130	0	0
Iron	0.0552	0.100	0.0500	0	110	70	130	0	0
Magnesium	0.309	0.300	0.300	0	103	70	130	0	0
Potassium	0.318	0.300	0.300	0	106	70	130	0	0
Sodium	0.318	0.300	0.300	0	106	70	130	0	0
Sample ID: DCS3-101483	Batch ID: 101483		TestNo	swe	6020B		Units:	mg/L	ı
SampType: DCS3	Run ID: ICP-MS5	_210803A	Analysi	s Date: 8/3/	2021 11:14:	00 AM	Prep Date:	8/2/2	021
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit Qual
Manganese	0.00528	0.0100	0.00500	0	106	70	130	0	0
Nickel	0.00555	0.0100	0.00500	0	111	70	130	0	0
Selenium	0.00540	0.00500	0.00500	0	108	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 4 of 16

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_211028A **Project:** Luminant - MLSES PDP 5

The QC data in batch 102576 applies to the following samples: 2110215-01A, 2110215-02A, 2110215-03A, 2110215-04A, 2110215-05A, 2110215-06A, 2110215-07A, 2110215-08A, 2110215-09A, 2110215-10A, 2110215-11A

Sample ID: MB-102576	Batch ID: 102576		TestNo:	SW6	6020B		Units:	mg/L
SampType: MBLK	Run ID: ICP-MS	5_211028A	Analysis	Date: 10/2	8/2021 10:5	2:00 A	Prep Date:	10/27/2021
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Aluminum	<0.0100	0.0300						
Cadmium	< 0.000300	0.00100						
Calcium	<0.100	0.300						
Iron	<0.0300	0.100						
Magnesium	<0.100	0.300						
Manganese	< 0.00300	0.0100						
Nickel	< 0.00300	0.0100						
Potassium	< 0.100	0.300						
Selenium	<0.00200	0.00500						
Sodium	<0.100	0.300						
Sample ID: LCS-102576	Batch ID: 102576		TestNo:	SWe	6020B		Units:	mg/L
SampType: LCS	Run ID: ICP-MS5	5_211028A	Analysis	Date: 10/2	8/2021 10:5	5:00 A	Prep Date:	10/27/2021
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Aluminum	5.10	0.0300	5.00	0	102	80	120	
Cadmium	0.203	0.00100	0.200	0	102	80	120	
Calcium	5.02	0.300	5.00	0	100	80	120	
Iron	5.19	0.100	5.00	0	104	80	120	
Magnesium	5.14	0.300	5.00	0	103	80	120	
Manganese	0.207	0.0100	0.200	0	103	80	120	
Nickel	0.208	0.0100	0.200	0	104	80	120	
Potassium	5.10	0.300	5.00	0	102	80	120	
Selenium	0.209	0.00500	0.200	0	104	80	120	
Sodium	5.15	0.300	5.00	0	103	80	120	
Sample ID: LCSD-102576	Batch ID: 102576		TestNo:	SWe	6020B		Units:	mg/L
SampType: LCSD	Run ID: ICP-MS	5_211028A	Analysis	Date: 10/2	8/2021 10:5	7:00 A	Prep Date:	10/27/2021

SampType: LCSD	Run ID:	ICP-MS	5_211028A	Analys	is Date: 10/2	8/2021 10:	7:00 A	Prep Date	: 10/2	7/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Aluminum		5.06	0.0300	5.00	0	101	80	120	0.821	15
Cadmium		0.204	0.00100	0.200	0	102	80	120	0.532	15
Calcium		5.01	0.300	5.00	0	100	80	120	0.219	15
Iron		5.14	0.100	5.00	0	103	80	120	1.04	15
Magnesium		5.11	0.300	5.00	0	102	80	120	0.545	15
Manganese		0.203	0.0100	0.200	0	101	80	120	1.97	15
Nickel		0.207	0.0100	0.200	0	103	80	120	0.573	15
Potassium		5.07	0.300	5.00	0	101	80	120	0.731	15
Selenium		0.208	0.00500	0.200	0	104	80	120	0.276	15

Qualifiers: Analyte detected in the associated Method Blank В

> Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit ND

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

R RPD outside accepted control limits Page 5 of 16

S Spike Recovery outside control limits

Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RL Reporting Limit

Analyte detected between SDL and RL

RunID: ICP-MS5_211028A

Sample ID: LC	SD-102576	Batch ID:	102576		TestN	lo: SW6	6020B		Units:	mg/L	
SampType: LC	SD	Run ID:	ICP-MS5	_211028A	Analy	sis Date: 10/2	8/2021 10:5	57:00 A	Prep Date:	10/27/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qu
Sodium			5.10	0.300	5.00	0	102	80	120	1.09	15
Sample ID: 21	10215-01A SD	Batch ID:	102576		TestN	lo: SW6	6020B		Units:	mg/L	
SampType: SD)	Run ID:	ICP-MS5	_211028A	Analy	sis Date: 10/2	8/2021 11:0	05:00 A	Prep Date:	10/27/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qu
Aluminum		<	<0.0500	0.150	0	0.0350				0	20
Cadmium		<	0.00150	0.00500	0	0				0	20
Calcium			3.59	1.50	0	3.66				1.75	20
Iron			<0.150	0.500	0	0.0734				0	20
Magnesium			3.43	1.50	0	3.42				0.322	20
Manganese			0.0626	0.0500	0	0.0638				1.91	20
Nickel		<	<0.0150	0.0500	0	0.00907				0	20
Potassium			2.12	1.50	0	2.13				0.147	20
Selenium		<	<0.0100	0.0250	0	0				0	20
Sodium			14.5	1.50	0	14.6				0.544	20
Sample ID: 21	10215-01A PDS	Batch ID:	102576		TestN	lo: SW6	6020B		Units:	mg/L	
SampType: PD	s	Run ID:	ICP-MS5	_211028A	Analy	sis Date: 10/2	8/2021 11:3	31:00 A	Prep Date:	10/27/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qu
Aluminum			4.96	0.0300	5.00	0.0350	98.5	75	125		
Cadmium			0.198	0.00100	0.200	0	98.8	75	125		
Calcium			8.32	0.300	5.00	3.66	93.2	75	125		
Iron			5.25	0.100	5.00	0.0734	104	75	125		
Magnesium			7.95	0.300	5.00	3.42	90.6	75	125		
Manganese			0.262	0.0100	0.200	0.0638	99.2	75	125		
Nickel			0.206	0.0100	0.200	0.00907	98.4	75	125		
Potassium			6.86	0.300	5.00	2.13	94.7	75	125		
Selenium			0.195	0.00500	0.200	0	97.3	75	125		
Sodium			18.8	0.300	5.00	14.6	84.4	75	125		
Sample ID: 21	10215-01A MS	Batch ID:	102576		TestN	lo: SW6	6020B		Units:	mg/L	
SampType: MS	3	Run ID:	ICP-MS5	_211028A	Analy	sis Date: 10/2	8/2021 11:3	34:00 A	Prep Date:	10/27/	2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qu
Aluminum	_		4.94	0.0300	5.00	0.0350	98.2	75	125		
Cadmium			0.201	0.00100	0.200	0	101	75	125		
Calcium			8.60	0.300	5.00	3.66	98.9	75	125		
Iron			5.20	0.100	5.00	0.0734	103	75	125		
Magnesium			8.49	0.300	5.00	3.42	101	75	125		
Qualifiers:	B Analyte det	tected in the a	ssociated Mo	ethod Blank	DF	Dilution Facto	or				
-	-	tected between				Method Detec				Ρe	age 6 of 16
	•	ed at the Meth			R	RPD outside a		rol limits		1 6	.gc 0 01 10
	DI Danadi I	1 1 14			C	C-:1 D					

S

Spike Recovery outside control limits

Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID:	ICP-MS5_2	11028A
--------	-----------	--------

Sample ID:	2110215-01A MS	Batch ID:	102576		TestNo	: SW6	6020B		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS5	_211028A	Analysi	s Date: 10/2	8/2021 11:3	4:00 A	Prep Date:	10/27	//2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qual
Manganese			0.266	0.0100	0.200	0.0638	101	75	125		
Nickel			0.209	0.0100	0.200	0.00907	100	75	125		
Potassium			7.13	0.300	5.00	2.13	100	75	125		
Selenium			0.202	0.00500	0.200	0	101	75	125		
Sodium			19.7	0.300	5.00	14.6	102	75	125		
Sample ID:	2110215-01A MSD	Batch ID:	102576		TestNo	: SW6	6020B		Units:	mg/L	
SampType:	MSD	Run ID:	ICP-MS5	_211028A	Analysi	s Date: 10/2	8/2021 11:3	6:00 A	Prep Date:	10/27	//2021
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qual
Aluminum			5.03	0.0300	5.00	0.0350	100	75	125	1.83	15
Cadmium			0.203	0.00100	0.200	0	101	75	125	0.750	15
Calcium			8.63	0.300	5.00	3.66	99.5	75	125	0.326	15
Iron			5.29	0.100	5.00	0.0734	104	75	125	1.70	15
Magnesium			8.63	0.300	5.00	3.42	104	75	125	1.70	15
Manganese			0.270	0.0100	0.200	0.0638	103	75	125	1.33	15
Nickel			0.211	0.0100	0.200	0.00907	101	75	125	0.874	15
Potassium			7.18	0.300	5.00	2.13	101	75	125	0.712	15
Selenium			0.205	0.00500	0.200	0	103	75	125	1.70	15
Sodium			20.0	0.300	5.00	14.6	108	75	125	1.52	15

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 7 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: ICP-MS5_211028A

Run ID:	ICP-MS5_	211028A	Analys	io Doto: 40/	0/0004 40-0	7 00 4			
		-	7 11 101 9 0	is Date. 10/2	28/2021 10:3	7:00 A	Prep Date) :	
R	esult	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit Qual
	2.50	0.0300	2.50	0	100	90	110		
0	.101	0.00100	0.100	0	101	90	110		
2	2.55	0.300	2.50	0	102	90	110		
2	2.68	0.100	2.50	0	107	90	110		
2	2.43	0.300	2.50	0	97.3	90	110		
0	.104	0.0100	0.100	0	104	90	110		
0	.110	0.0100	0.100	0	110	90	110		
2	2.44	0.300	2.50	0	97.5	90	110		
0	.108	0.00500	0.100	0	108	90	110		
2	2.52	0.300	2.50	0	101	90	110		
Batch ID:	R117745		TestNo	: SW	6020B		Units:	mg/L	
Run ID:	ICP-MS5_	211028A	Analys	is Date: 10/2	28/2021 10:4	4:00 A	Prep Date) :	
R	esult	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit Qual
0	.109	0.0300	0.100	0	109	80	120		
0.0	00103	0.00100	0.00100	0	103	80	120		
0.	0950	0.300	0.100	0	95.0	80	120		
0	.104	0.100	0.100	0	104	80	120		
0.	0982	0.300	0.100	0	98.2	80	120		
0.0	00493	0.0100	0.00500	0	98.6	80	120		
0.0	00516	0.0100	0.00500	0	103	80	120		
0.	0985	0.300	0.100	0	98.5	80	120		
0.0	00528	0.00500	0.00500	0	106	80	120		
0	.103	0.300	0.100	0	103	80	120		
Batch ID:	R117745		TestNo	: SW	6020B		Units:	mg/L	
Run ID:	ICP-MS5_	211028A	Analys	is Date: 10/2	28/2021 11:3	9:00 A	Prep Date) :	
R	esult	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit Qual
	4.98	0.0300	5.00	0	99.7	90	110		
0	.204	0.00100	0.200	0	102	90	110		
2	4.94	0.300	5.00	0	98.8	90	110		
Ę	5.23	0.100	5.00	0	105	90	110		
Ę	5.08	0.300	5.00	0	102	90	110		
0	.202	0.0100	0.200	0	101	90	110		
0	.212	0.0100	0.200	0	106	90	110		
2	4.97	0.300	5.00	0	99.5	90	110		
0	.215	0.00500	0.200	0	107	90	110		
Ę	5.11	0.300	5.00	0	102	90	110		
	Batch ID: Run ID: Run ID: Run ID: Run ID: Run ID: Run ID: Run ID: Run ID:	Run ID: Result 0.109 0.00103 0.0950 0.104 0.0982 0.00493 0.00516 0.0985 0.00528 0.103 Batch ID: R117745 Run ID: ICP-MS5_ Result 4.98 0.204 4.94 5.23 5.08 0.202 0.212 4.97 0.215	0.101 0.00100 2.55 0.300 2.68 0.100 2.43 0.300 0.104 0.0100 0.110 0.0100 2.44 0.300 0.108 0.00500 2.52 0.300 Batch ID: R117745 Run ID: ICP-MS5_211028A Result RL 0.109 0.0300 0.00103 0.00100 0.0950 0.300 0.104 0.100 0.0982 0.300 0.104 0.100 0.0982 0.300 0.00493 0.0100 0.0985 0.300 0.00516 0.0100 0.0985 0.300 0.00528 0.00500 0.103 0.300 Batch ID: R117745 Run ID: ICP-MS5_211028A Result RL 4.98 0.0300 0.204 0.00100 4.94 0.300 5.23 0.100 5.08 0.300 0.204 0.00100 4.94 0.300 5.23 0.100 5.08 0.300 0.202 0.0100 0.212 0.0100 4.97 0.3300 0.212 0.0100 4.97 0.3300 0.215 0.00500	0.101 0.00100 0.100 2.55 0.300 2.50 2.68 0.100 2.50 2.43 0.300 2.50 0.104 0.0100 0.100 0.110 0.0100 0.100 2.44 0.300 2.50 0.108 0.00500 0.100 2.52 0.300 2.50 Batch ID: R117745 TestNo Run ID: ICP-MS5_211028A Analys Result RL SPK value 0.109 0.0300 0.100 0.0950 0.300 0.100 0.0950 0.300 0.100 0.0982 0.300 0.100 0.00493 0.0100 0.00500 0.00516 0.0100 0.00500 0.00985 0.300 0.100 0.00528 0.0500 0.00500 0.00528 0.0500 0.00500 0.103 0.300 0.100 Batch ID: R117745 TestNo Run ID: ICP-MS5_211028A Analys Result RL SPK value 4.98 0.0300 5.00 0.204 0.00100 0.200 4.94 0.300 5.00 0.204 0.00100 0.200 4.94 0.300 5.00 0.202 0.0100 0.200 4.97 0.300 5.00 0.212 0.0100 0.200 4.97 0.300 5.00 0.201 0.00500 0.200 4.97 0.300 5.00 0.201 0.00500 0.200 4.97 0.300 5.00 0.201 0.00500 0.200	0.101	0.101 0.00100 0.100 0 101 2.55 0.300 2.50 0 102 2.68 0.100 2.50 0 107 2.43 0.300 2.50 0 97.3 0.104 0.0100 0.100 0 104 0.110 0.0100 0.100 0 110 2.44 0.300 2.50 0 97.5 0.108 0.00500 0.100 0 101 2.52 0.300 2.50 0 101 Batch ID: R117745 TestNo: SW6020B Run ID: ICP-MS5_211028A Analysis Date: 10/28/2021 10:4 Result RL SPK value Ref Val %REC 0.109 0.0300 0.100 0 103 0.0950 0.300 0.100 0 95.0 0.104 0.100 0.100 0 98.2 0.00493 0.0100 0.00500 0 98.6 0.00516 0.0100 0.00500 0 98.6 0.00528 0.00500 0.00500 0 103 0.0985 0.300 0.100 0 98.5 0.00528 0.00500 0.00500 0 106 0.103 0.300 0.100 0 103 Batch ID: R117745 TestNo: SW6020B Run ID: Result RL SPK value Ref Val %REC Result RL SPK value Ref Val %REC 4.98 0.0300 0.100 0 99.7 0.204 0.00100 0.200 0 102 4.94 0.300 5.00 0 99.7 0.204 0.00100 0.200 0 102 4.94 0.300 5.00 0 98.8 5.23 0.100 5.00 0 98.8 5.23 0.100 5.00 0 99.5 0.202 0.0100 0.200 0 106 0.212 0.0100 0.200 0 106 0.212 0.0100 0.200 0 106 0.215 0.00500 0.200 0 107 0.215 0.00500 0.200 0 107 0.215 0.00500 0.200 0 107 0.200 0.200 0 107 0.215 0.00500 0.200 0 107 0.215 0.00500 0.200 0 107 0.200 0.200 0 107 0.200 0.200 0 107 0.215 0.00500 0.200 0 107 0.200 0.200 0 107 0.200 0.200 0 107 0.215 0.00500 0.200 0 107 0.200 0.200 0 107 0.201 0.205 0.200 0 107 0.215 0.00500 0.200 0 107 0.202 0.100 0.200 0 107 0.201 0.205 0.200 0 107 0.202 0.205 0.200 0 107 0.202 0.205 0.200 0 107 0.202 0.205 0.200 0 107 0.202 0.205 0.200 0 107	0.101 0.00100 0.100 0 101 90 2.55 0.300 2.50 0 102 90 2.68 0.100 2.50 0 107 90 0.104 0.0100 0.100 0 104 90 0.110 0.0100 0.100 0 110 90 0.110 0.0100 0.100 0 110 90 0.110 0.0100 0.100 0 108 90 2.44 0.300 2.50 0 97.5 90 0.108 0.00500 0.100 0 108 90 2.52 0.300 2.50 0 101 90 Batch ID: R117745 TestNo: SW6020B Result RL SPK value Ref Val %REC LowLim 0.00103 0.00103 0.00100 0.00103 80 0.0950 0.300 0.100 0 103 80 0.0950 0.300 0.100 0 103 80 0.0950 0.300 0.100 0 98.2 80 0.00493 0.0100 0.00500 0 98.6 80 0.00516 0.0100 0.00500 0 98.6 80 0.00528 0.00500 0.000 0 98.5 80 0.00528 0.00500 0.00500 0 103	0.101	0.101

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 16

Potassium

Sodium

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: ICP-MS5_211028A

Troject. Lumman	iii - Milbeb i Di J				Kulli		CI -NIDS_	_211020A
Sample ID: CCV2-211028	Batch ID: R1177	45	TestNo	o: SW	6020B		Units:	mg/L
SampType: CCV	Run ID: ICP-M	S5_211028A	Analys	sis Date: 10/2	.8/2021 12: ⁻	10:00 P	Prep Date	:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aluminum	4.92	0.0300	5.00	0	98.3	90	110	
Cadmium	0.203	0.00100	0.200	0	101	90	110	
Calcium	5.04	0.300	5.00	0	101	90	110	
Iron	5.34	0.100	5.00	0	107	90	110	
Magnesium	5.07	0.300	5.00	0	101	90	110	
Manganese	0.204	0.0100	0.200	0	102	90	110	
Nickel	0.216	0.0100	0.200	0	108	90	110	
Potassium	4.93	0.300	5.00	0	98.7	90	110	
Selenium	0.213	0.00500	0.200	0	107	90	110	
Sodium	5.16	0.300	5.00	0	103	90	110	
Sample ID: CCV3-211028	Batch ID: R1177	45	TestNo	o: SW (6020B		Units:	mg/L
SampType: CCV	Run ID: ICP-M	S5_211028A	Analys	is Date: 10/2	8/2021 12:4	44:00 P	Prep Date	:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Calcium	4.92	0.300	5.00	0	98.5	90	110	
Iron	5.26	0.100	5.00	0	105	90	110	
Magnesium	5.04	0.300	5.00	0	101	90	110	
Manganese	0.205	0.0100	0.200	0	103	90	110	

5.00

5.00

0

0

99.4

102

90

90

110

110

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

4.97

5.11

0.300

0.300

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 9 of 16

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: IC2_210928A

Sample ID: DCS2-102216	Batch ID:			TestNo				Units:	mg/	
SampType: DCS2	Run ID:	IC2_2109	928A	Analysi	s Date: 9/28	/2021 1:38:	01 PM	Prep Date	9/28	/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride		0.533	1.00	0.5000	0	107	70	130	0	0
Sulfate		1.55	3.00	1.500	0	104	70	130	0	0
Sample ID: DCS3-102216	Batch ID:	102216		TestNo	E300)		Units:	mg/l	<u>L</u>
SampType: DCS3	Run ID:	IC2_2109	928A	Analysi	s Date: 9/28	/2021 1:54:	01 PM	Prep Date	9/28	/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride		1.05	1.00	1.000	0	105	70	130	0	0
Sulfate		3.10	3.00	3.000	0	103	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 10 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: IC2_211028A

The QC data in batch 102594 applies to the following samples: 2110215-01B, 2110215-02B, 2110215-03B, 2110215-04B, 2110215-	5B, 2110215-
06B, 2110215-07B, 2110215-08B, 2110215-09B, 2110215-10B, 2110215-11B	

06B, 211021	5-07B, 2110215-08E			215-10B, 21	10215-11B							
Sample ID: I	MB-102594	Batch ID:	102594		TestNo:	E300)		Units:	mg/L		
SampType: I	MBLK	Run ID:	IC2_211	1028A	Analysis	s Date: 10/2	8/2021 11:	59:09 A	Prep Date:	10/28/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	t Qua
Chloride Sulfate			<0.300 <1.00	1.00 3.00								
Sample ID: I	LCS-102594	Batch ID:	102594		TestNo:	E300)		Units:	mg/L		
SampType: I	LCS	Run ID:	IC2_211	1028A	Analysis	s Date: 10/2	8/2021 12:1	15:09 P	Prep Date:	10/28/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	t Qual
Chloride Sulfate			10.4 31.7	1.00 3.00	10.00 30.00	0 0	104 106	90 90	110 110			
Sample ID: I	LCSD-102594	Batch ID:	102594		TestNo	E300)		Units:	mg/L		
SampType: I	LCSD	Run ID:	IC2_211	1028A	Analysis	s Date: 10/2	8/2021 12:3	31:09 P	Prep Date:	10/28/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	t Qual
Chloride Sulfate			10.3 31.7	1.00 3.00	10.00 30.00	0 0	103 106	90 90	110 110	0.587 0.218	20 20	
Sample ID: 2	2110242-02EMS	Batch ID:	102594		TestNo:	E300)		Units:	mg/L		
SampType: I	MS	Run ID:	IC2_211	1028A	Analysis	s Date: 10/2	8/2021 8:24	4:50 PM	Prep Date:	10/28/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	t Qual
Chloride Sulfate			374 286	10.0 30.0	200.0 200.0	200.6 94.80	86.6 95.8	90 90	110 110			S
Sample ID: 2	2110242-02EMSD	Batch ID:	102594		TestNo:	E300)		Units:	mg/L		
SampType: I	MSD	Run ID:	IC2_211	1028A	Analysis	s Date: 10/2	8/2021 8:40):50 PM	Prep Date:	10/28/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	t Qual
Chloride Sulfate			370 285	10.0 30.0	200.0 200.0	200.6 94.80	84.8 95.0	90 90	110 110	0.927 0.576	20 20	S
Sample ID: 2	2110242-03EMS	Batch ID:	102594		TestNo	E300)		Units:	mg/L		
SampType: I	MS	Run ID:	IC2_211	1028A	Analysis	s Date: 10/2	8/2021 9:12	2:50 PM	Prep Date:	10/28/	2021	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	t Qual
Chloride Sulfate			368 287	10.0 30.0	200.0 200.0	202.3 99.33	83.0 93.7	90 90	110 110			S

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 11 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID:	IC2_211028A

Sample ID: 2110242-03EMSD	Batch ID:	102594		TestNo	: E30	0		Units:	mg/L		
SampType: MSD	Run ID:	IC2_21	1028A	Analys	is Date: 10/2	8/2021 9:28	:50 PM	Prep Date	: 10/28	3/2021	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit	t Qual
Chloride		369	10.0	200.0	202.3	83.1	90	110	0.035	20	S
Sulfate		287	30.0	200.0	99.33	93.8	90	110	0.064	20	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 12 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: IC2_211028A

Sample ID: I	CV-211028	Batch ID:	R117742		TestNo	E30	0		Units:	mg/L
SampType: I	cv	Run ID:	IC2_21102	28A	Analysis	s Date: 10/2	8/2021 11:2	27:09 A	Prep Date	e:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			26.3	1.00	25.00	0	105	90	110	
Sulfate			81.5	3.00	75.00	0	109	90	110	
Sample ID: (CCV1-211028	Batch ID:	R117742		TestNo:	E30	0		Units:	mg/L
SampType: (CCV	Run ID:	IC2_21102	28A	Analysis	s Date: 10/2	8/2021 7:20):50 PM	Prep Date	e:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.3	1.00	10.00	0	103	90	110	
Sulfate			31.5	3.00	30.00	0	105	90	110	
Sample ID: (CCV2-211028	Batch ID:	R117742		TestNo:	E30	0		Units:	mg/L
SampType: (ccv	Run ID:	IC2_21102	28A	Analysis	s Date: 10/2	9/2021 12:0)8:50 A	Prep Date	e:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	
Sulfate			31.5	3.00	30.00	0	105	90	110	
Sample ID: (CCV3-211028	Batch ID:	R117742		TestNo	E30	0		Units:	mg/L
SampType: (CCV	Run ID:	IC2_21102	28A	Analysis	s Date: 10/2	9/2021 3:52	2:50 AM	Prep Date	: :
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	
Sulfate			31.2	3.00	30.00	0	104	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 13 of 16

Analyte

ANALYTICAL QC SUMMARY REPORT

%REC

Ref Val

Project: Luminant - MLSES PDP 5 **RunID:** TITRATOR_211027A

LowLimit HighLimit %RPD RPDLimit Qual

Page 14 of 16

Sample ID: MD 102572 Ratch ID: 102572 TestNo: M220 B	Unite: ma/l @ nH 4.25
06B, 2110215-07B, 2110215-08B, 2110215-09B, 2110215-10B, 2110215-11B	
The QC data in batch 102572 applies to the following samples: 2110215-01B, 2110215-02B, 2110215-03B,	2110215-04B, 2110215-05B, 2110215-

Sample ID: MB-102572	Batch ID:	102572		TestNo	M23	20 B		Units:	mg/L @ pH 4.35
SampType: MBLK	Run ID:	TITRATO	R_211027A	Analysi	s Date: 10/2	7/2021 10:	12:00 A	Prep Date:	10/27/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCo	O3)	<10.0	20.0						
Alkalinity, Carbonate (As CaCO	3)	<10.0	20.0						
Alkalinity, Hydroxide (As CaCO3	3)	<10.0	20.0						
Alkalinity, Total (As CaCO3)		<20.0	20.0						
Sample ID: LCS-102572	Batch ID:	102572		TestNo	M23	20 B		Units:	mg/L @ pH 4.25
SampType: LCS	Run ID:	TITRATO	R_211027A	Analysi	s Date: 10/2	7/2021 10:	16:00 A	Prep Date:	10/27/2021

Alkalinity, Total (As CaCO3)		53.8	20.0	50.00	0	108	74	129		
Sample ID: LCSD-102572	Batch ID:	102572		TestNo	: M23	20 B		Units:	mg/L	@ pH 4.35
SampType: LCSD	Run ID:	TITRATO	DR_211027A	Analysi	s Date: 10/2	7/2021 10:2	21:00 A	Prep Date	: 10/27	7/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qua
Alkalinity, Total (As CaCO3)		53.4	20.0	50.00	0	107	74	129	0.896	20

SPK value

Result

RL

Sample ID: 2110153-02D-DUP	Batch ID:	102572		TestNo	: M23	20 B	Units:	mg/l	L @ pH 4.53
SampType: DUP	Run ID:	TITRATO	R_211027A	Analysi	s Date: 10/2	7/2021 11:19	9:00 A Prep Da	nte: 10/2	7/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit HighLim	nit %RPD	RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	276	20.0	0	281.8			2.12	20
Alkalinity, Carbonate (As CaCO3))	<10.0	20.0	0	0			0	20
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0	0	0			0	20
Alkalinity, Total (As CaCO3)		276	20.0	0	281.8			2.12	20

Sample ID: 2110165-01D-DUP	Batch ID:	102572		TestNo	: 1	M2320 B	Units:	mg/	L @ pH 4.54
SampType: DUP	Run ID:	TITRATOR	R_211027A	Analysi	s Date:	10/27/2021 11:51	:00 A Prep Date	: 10/2	7/2021
Analyte		Result	RL	SPK value	Ref Va	al %REC I	LowLimit HighLimit	%RPD	RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO3	3)	310	20.0	0	317.9)		2.52	20
Alkalinity, Carbonate (As CaCO3)		<10.0	20.0	0	0			0	20
Alkalinity, Hydroxide (As CaCO3)		<10.0	20.0	0	0			0	20
Alkalinity, Total (As CaCO3)		310	20.0	0	317.9)		2.52	20

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

R S Spike Recovery outside control limits

Parameter not NELAP certified

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

RunID: TITRATOR_211027A

Project: Luminant	t - MLSES	PDP 5				Kunn); <u> </u>	IIIKAIU	K_21102/A
Sample ID: ICV-211027	Batch ID:	R117720		TestNo:	M23	20 B		Units:	mg/L @ pH 4.33
SampType: ICV	Run ID:	TITRATOR	_211027A	Analysis	Date: 10/2	7/2021 10:0	7:00 A	Prep Date:	10/27/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaC	O3)	23.3	20.0	0					
Alkalinity, Carbonate (As CaCO	3)	76.5	20.0	0					
Alkalinity, Hydroxide (As CaCO	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		99.8	20.0	100.0	0	99.8	98	102	
Sample ID: CCV1-211027	Batch ID:	R117720		TestNo:	M23	20 B		Units:	mg/L @ pH 4.37
SampType: CCV	Run ID:	TITRATOR	_211027A	Analysis	Date: 10/2	7/2021 12:2	23:00 P	Prep Date:	10/27/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaC	O3)	33.8	20.0	0					
Alkalinity, Carbonate (As CaCO	3)	65.8	20.0	0					
Alkalinity, Hydroxide (As CaCO	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		99.5	20.0	100.0	0	99.5	90	110	
Sample ID: CCV2-211027	Batch ID:	R117720		TestNo:	M23	20 B		Units:	mg/L @ pH 4.43
SampType: CCV	Run ID:	TITRATOR	_211027A	Analysis	s Date: 10/2	7/2021 1:58	3:00 PM	Prep Date:	10/27/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaC	O3)	25.9	20.0	0					
Alkalinity, Carbonate (As CaCO	3)	74.6	20.0	0					
Alkalinity, Hydroxide (As CaCO	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		100	20.0	100.0	0	100	90	110	
Sample ID: CCV3-211027	Batch ID:	R117720		TestNo:	M23	320 B		Units:	mg/L @ pH 4.38
SampType: CCV	Run ID:	TITRATOR	_211027A	Analysis	Date: 10/2	7/2021 2:16	6:00 PM	Prep Date:	10/27/2021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaC	O3)	27.0	20.0	0					
Alkalinity, Carbonate (As CaCO	3)	72.6	20.0	0					
Alkalinity, Hydroxide (As CaCO	3)	<10.0	20.0	0					
Alkalinity, Total (As CaCO3)		99.7	20.0	100.0	0	99.7	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 16

ANALYTICAL QC SUMMARY REPORT

Project: Luminant - MLSES PDP 5

WC_211027C **RunID:**

The QC data in batch 102570 applies to the following samples: 2110215-01B, 2110215-02B, 2110215-03B, 2110215-04B, 2110215-05B, 21102	5-
06B. 2110215-07B. 2110215-08B. 2110215-09B. 2110215-10B. 2110215-11B	

Sample ID: MB-102570	Batch ID:	102570		TestNo:	M2	540C		Units:	mg/L	
SampType: MBLK	Run ID:	WC_21	1027C	Analysis	Date: 10/2	27/2021 3:05	:00 PM	Prep Date:	10/27/2	021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissolved Solids (R	esidue, Filtera	<10.0	10.0							
Sample ID: LCS-102570	Batch ID:	102570		TestNo:	M2	540C		Units:	mg/L	
SampType: LCS	Run ID:	WC_21	1027C	Analysis	Date: 10/2	27/2021 3:05	:00 PM	Prep Date:	10/27/2	021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissolved Solids (R	esidue, Filtera	740	10.0	745.6	0	99.2	90	113		
Sample ID: 2110220-021	D-DUP Batch ID:	102570		TestNo:	M2	540C		Units:	mg/L	
SampType: DUP	Run ID:	WC_21	1027C	Analysis	Date: 10/2	27/2021 3:05	:00 PM	Prep Date:	10/27/2	021
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	SRPD RP	DLimit Qual
Analyte Total Dissolved Solids (R	esidue, Filtera	Result 3760	RL 50.0	SPK value	Ref Val	%REC	LowLimi		0.399	DLimit Qual
	•				3770	%REC	LowLimi			
Total Dissolved Solids (R	•	3760	50.0	0 TestNo:	3770 M2 5				0.399	5
Total Dissolved Solids (R Sample ID: 2110229-01	D-DUP Batch ID:	3760 102570	50.0	0 TestNo:	3770 M2 5	540C	i:00 PM	Units:	0.399 mg/L 10/27/2	5 021
Total Dissolved Solids (R Sample ID: 2110229-01I SampType: DUP	D-DUP Batch ID:	3760 102570 WC_21	50.0	0 TestNo: Analysis	3770 M28 Date: 10/2	540C 27/2021 3:05	i:00 PM	Units: Prep Date:	0.399 mg/L 10/27/2	5 021

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 16 of 16

R RPD outside accepted control limits S

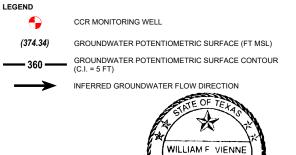
Spike Recovery outside control limits

Parameter not NELAP certified

CLIENT: Golder **Work Order:** 2110215

MQL SUMMARY REPORT

Project: Luminant - MLSES PDP 5


TestNo: E300	MDL	MQL
Analyte	mg/L	mg/L
Chloride	0.300	1.00
Sulfate	1.00	3.00
TestNo: SW6020B	MDL	MQL
Analyte	mg/L	mg/L
Aluminum	0.0100	0.0300
Boron	0.0100	0.0300
Cadmium	0.000300	0.00100
Calcium	0.100	0.300
Iron	0.0300	0.100
Magnesium	0.100	0.300
Manganese	0.00300	0.0100
Nickel	0.00300	0.0100
Potassium	0.100	0.300
Selenium	0.00200	0.00500
Sodium	0.100	0.300
TestNo: M2320 B	MDL	MQL
Analyte	g/L @ pH 4.3	ig/L @ pH 4.0
Alkalinity, Bicarbonate (As CaCO3)	10.0	20.0
Alkalinity, Carbonate (As CaCO3)	10.0	20.0
Alkalinity, Hydroxide (As CaCO3)	10.0	20.0
Alkalinity, Total (As CaCO3)	20.0	20.0
TestNo: M2540C	MDL	MQL
Analyte	mg/L	mg/L
Total Dissolved Solids (Residue, Filt	10.0	10.0

Qualifiers: MQL -Method Quantitation Limit as defined by TRRP

MDL -Method Detection Limit as defined by TRRP

ATTACHMENT 2 2021 GROUNDWATER POTENTIOMETRIC SURFACE MAPS

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17.

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

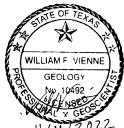
TITLE

PDP 5 POTENTIOMETRIC SURFACE MAP JUNE 3, 2021

CONSULTANT

YYYY-MM-DD	2022-12-02
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. CONTROL REV. FIGURE 19122262 0 1


CCR MONITORING WELL

(374.34)

GROUNDWATER POTENTIOMETRIC SURFACE (FT MSL)

GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR (C.I. = 5 FT)

INFERRED GROUNDWATER FLOW DIRECTION

REFERENCE(S)

BASE MAP TAKEN FROM GOOGLE EARTH, IMAGERY DATED 4/6/17.

CLIENT LUMINANT

PROJECT

MARTIN LAKE STEAM ELECTRIC STATION TATUM, TEXAS

TITLE

PDP 5 POTENTIOMETRIC SURFACE MAP **OCTOBER 4, 2021**

CONSULTANT

/YYY-MM-DD	2022-12-02
DESIGNED	AJD
PREPARED	AJD
REVIEWED	WFV
APPROVED	WFV

PROJECT NO. CONTROL REV. FIGURE 19122262 0

ATTACHMENT 3 ALTERNATE SOURCE DEMONSTRATION

Alternate Source Demonstration March 5, 2021

ALTERNATE SOURCE DEMONSTRATION SUMMARY MARTIN LAKE STEAM ELECTRIC STATION – PDP 5

Introduction

This Alternate Source Demonstration Summary was prepared to document that a source other than the Permanent Disposal Pond 5 (PDP 5) (the Site) caused the statistically significant increases (SSIs) over background levels observed during the 2020 Coal Combustion Residual (CCR) Detection Monitoring Program sampling events as required by 40 CFR 257.94(e)(2) (the "CCR Rule").

PDP-5 History and CCR Monitoring Well Network

A Site Plan showing PDP-5 and vicinity is shown on Figure 1. PDP-5 was constructed in 2010 on top of and immediately adjacent to closed and capped former pre-CCR Rule coal ash surface impoundments that began operation in 1979. PDP-5 extends significantly above natural grade and represents a localized topographic highpoint relative to the surrounding area. Based on this configuration, there are no upgradient monitoring wells at PDP-5.

The CCR groundwater monitoring well system at PDP-5 consists of nine monitoring wells (MW-17A, MW-18A, MW-19, MW-20A, PDP-22, PDP-23, PDP-24, PDP-25, PDP-26). As shown on Figure 1, the wells are distributed radially along the perimeter of PDP-5 and are screened in the uppermost aquifer.

2020 Semi-Annual Detection Monitoring Results and Discussion

Detection Monitoring Program groundwater data collected from the PDP-5 CCR monitoring well network from 2017 through 2020 are summarized in Table 1. Detection Monitoring Program groundwater samples were collected on a semi-annual basis in 2020 in accordance with 40 CFR 257.94. Golder collected the first 2020 Detection Monitoring Program groundwater samples in May 2020 and the second semi-annual Detection Monitoring Program groundwater samples in September 2020. Intrawell statistical evaluations were used to identify SSIs from the 2020 Detection Monitoring Program in accordance with the procedures outlined in the Statistical Analysis Plan (SAP) (PBW, 2017).

Based on the 2020 semi-annual analytical results, SSIs were identified for boron and calcium in well PDP-25, calcium in well PDP-23, and chloride in well MW-20A. Prediction limits for boron in wells MW-18A, MW-20A, and PDP-23 were exceeded during the first semi-annual 2020 sampling event; however, since the prediction limits were not exceeded during the second semi-annual 2020 event samples from these wells, SSIs were not indicated for these constituents/wells as specified in the SAP.

The boron SSI concentrations in the 2020 groundwater samples from well PDP-25 (maximum sample concentration of 0.202 mg/L) exceeded the boron prediction limit of 0.136 mg/L for that well; however, the 2020 PDP-25 boron sample results are significantly lower than the boron sample concentrations observed at other Site wells where SSIs were not indicated. For example, six of the eight other CCR monitoring wells (MW-17A, MW-18A, MW-19, MW-20A, PDP-22, and PDP-24) had boron sample concentrations in 2020 that were higher than those observed in the PDP-25 samples, but SSIs were not indicated in these other wells. Therefore, the boron sample concentrations observed at PDP-25 are similar or less than those observed in other Site wells and are attributed to variability caused by the heterogeneity of the uppermost aquifer at the Site.

The calcium SSI concentrations in the 2020 groundwater samples from well PDP-23 (maximum sample concentration of 2.31 mg/L) exceeded the calcium prediction limit of 2.0 mg/L for that well. The calcium SSI concentrations in the 2020 groundwater samples from well PDP-25 (maximum sample concentration of 46.3 mg/L) exceeded the calcium prediction limit of 41.3 mg/L for that well. The historical variability of calcium in groundwater samples collected Site-wide has been high, ranging from about 1 mg/L to 133 mg/L. The calcium SSI sample concentrations observed at PDP-23 and PDP-25 fall in this historical range. Also, two wells (MW-19 and PDP-22) sampled during 2020 that did not have SSIs had calcium sample concentrations that were higher than the maximum calcium SSI observed in 2020. Therefore, the calcium sample concentrations observed at PDP-23 and PDP-25 are similar or less than those observed in other Site wells and are attributed to variability caused by the heterogeneity of the uppermost aquifer at the Site.

The chloride SSI concentration in well MW-20A in September 2020 (12.6 mg/L) slightly exceeded the chloride prediction limit (12.3 mg/L) for that well. The chloride sample concentration from well MW-20A in May 2020 (10.4 mg/L) was below the chloride prediction limit for that well; however, the September 2020 chloride sample result was assumed to be an SSI because a confirmation sample was not collected after the September 2020 sampling event. Four of the eight other CCR monitoring wells (MW-19, PDP-22, PDP-24, and PDP-25) had chloride sample concentrations in 2020 that were higher than those observed in the PDP-20A SSI sample, but SSIs were not indicated in these other wells. Also, the PDP-20A SSI sample chloride concentration was below the Site-wide average concentration of 22 mg/L. Therefore, the chloride sample SSI concentration observed at MW-20A is similar or less than those observed in other Site wells and is attributed to variability caused by the heterogeneity of the uppermost aquifer at the Site.

It should also be noted that groundwater conditions in the vicinity of PDP-5 are influenced by the closed and capped former pre-CCR Rule coal ash surface impoundments beneath and adjacent to PDP-5. As a result, Detection Monitoring groundwater concentrations identified as SSIs may also be attributable to historical operation of the closed former surface impoundments in addition to the natural variability caused by the heterogeneity of the groundwater system at the Site.

Conclusion

SSIs were identified for boron, calcium, and chloride during the 2020 Detection Monitoring Program sampling events at PDP 5. All observed SSIs are attributed to natural variation in groundwater quality due to the heterogeneity of the groundwater system and to potential effects from the closed former non-CCR Rule coal ash surface impoundments in the vicinity of PDP 5. The SSIs identified in the 2020 sample data are not considered evidence of a release from the CCR unit. In accordance with Section 257.94(e)(2), Luminant should continue the Detection Monitoring Program. Initiation of an Assessment Monitoring Program is not required at this time.

References

Pastor, Behling & Wheeler, LLC (PBW), 2017. Coal Combustion Residual Rule, Statistical Analysis Plan, PDP 5, Rusk County, Texas. October 11, 2017.

Alternate Source Demonstration March 5, 2021

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Golder Associates Inc. under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the alternative source demonstration at the referenced facility meets the requirements of Section 257.94(e)(2) of the CCR Rule.

Patrick J. Behling, P.E. Principal Engineer GOLDER ASSOCIATES INC.

atul J. Bell

PATRICK J. BEHLING
79872
O. CENSED

TABLE 1
CCR Groundwater Detection Monitoring Data Summary
Martin Lake Steam Electric Station - PDP 5

Sample	Date	В		Ca		CI		FI		field	Н	SO	4	TDS	3
Location	Sampled	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample	Prediction	Sample
	09/22/17	Limit	Data 0.402	Limit	Data 3.1	Limit	Data 8.3	Limit	Data <0.1	Limit	Data 6.78	Limit	Data 31.2	Limit	Data 111
MW-17A	06/14/18	- -	0.485		6.48		9.16	-	<0.1		6.87		45.9		129
	09/11/18				5.06				0.179 J						137
NANA/ 47A		0.530	0.523	6.73		10.4	8.82	0.4		2.5	5.03	F4.0	43.1	470	
IVIVV-17A	05/13/19	0.538	0.497	0.73	4.88	10.4	9.18	0.4	<0.1	9.19	6.79	51.9	44.7	170	145
	11/7/2019		0.52		5.05		8.81		<0.100		6.44		43.9		127
	5/19/2020		0.521		5.09		8.74		<0.100		6.57		46.8		140
	9/25/2020		0.477		5.76		10.1		<0.100		6.57		47.7		133
	09/21/17		0.0654		1.04		5.27	0.4	<0.1		6.94		3.23	170 170 170 170 170 170 170 170 170 170	45
	06/14/18		0.102		2	10.4	6.56		<0.1		6.92		3.48		71
	09/12/18		0.211	3.1	3.23		9.06		<0.1		5.69		4.82		150
MW-18A	11/7/2018 re-sample	0.20	0.128						-1	4.88 7.92	-1	9.1			
MW-18A	05/13/19		0.117		1.01		6.17		0.138 J	7.92	6.64		3.23		73
	11/7/2019		0.127		11.5		6.34		<0.100		6.23		3.67		68
	5/19/2020		0.225		1.54		7.09		<0.100		6.89		5.97		86
	9/25/2020		0.188		1.66		8.13		<0.100		6.78		6.03		77
	09/22/17		0.0677		2.74		5.36		<0.1		6.94		1.46 J	1 380	98
	06/14/18		0.577		133		24.4		0.216 J		6.78		328		758
	09/11/18		0.243		38		65.1		0.228 J		6.04		166		597
MW-19	11/7/2018 re-sample	0.782		237		57.7	5.22	0.512	-	4.6		672			
	05/13/19	3 02	0.429	_3.	122		26.8	5.5 . =	0.229 J	8.08	6.72		349	.,300	813
	11/8/2019	-	0.529		77.8	.8	49.3		0.189 J		6.87		310	170	844
	5/19/2020		0.0724		1.49		5.84		<0.100		6.91		1.02 J		85
	9/25/2020		0.412		94.6		14.3		0.111 J		6.92		160		462

TABLE 1
CCR Groundwater Detection Monitoring Data Summary
Martin Lake Steam Electric Station - PDP 5

Sample	Date	В		Ca		CI		FI		field pH		SO ₄		TDS	S
Location	Sampled	Prediction Limit	Sample Data												
	09/22/17	-	0.0807		17.4	17.4	12.6		0.175 J		6.71		74.2		237
MW-20A	02/21/18 re-sample						10.7	 	1						
	06/13/18		0.171		24		10.9		0.672		6.72		132		250
MW-20A	09/11/18	0.213	0.141	25.7	7.16	12.3	11	0.954	0.235 J	3.06	4.70	148	39.1	381	154
	05/13/19		0.239		37.4		10.2		0.731	8.76	6.81		178		328
	11/8/2019		0.132		9.9		10.2		0.465		6.51		88		205
	5/19/2020		0.22		24		10.4		0.413		6.83		133		270
	9/25/2020		0.107		8.94		12.6		0.132 J		6.68		54.3		162
	09/22/17		0.221		92.5		12.3		0.321 J		6.98		178	1,780	558
	06/14/18	0	0.115	7.78	7.78		11.8		0.239		6.63		186		491
	09/12/18		0.164		61.1		10.9		0.216 J		5.88		143		476
PDP-22	05/13/19	0.411	0.158	306	98.2	32.7	10.1	1.07	0.303 J	4.08 8.63	6.86	216	184		615
	11/12/2019		0.226		34.3		12.6		0.218 J	0.00	6.93		215		482
	5/19/2020		0.0646		54.9		1.06		<0.100		6.55		5.21		205
	9/25/2020		0.206		25.1		12.7		0.128 J		6.73		186	381 1,780	398
	09/22/17		0.0463		2.34		4.48		0.147 J		6.77		1.47 J		111
	02/21/18 re- sample				2.37									Prediction Limit	
	06/13/18		0.0357		2.29		6.21		<0.1		6.82		1.26 J		98
	09/11/18		0.0760		1.96		6.38		<0.1		5.32		1.52 J		98
PDP-23	11/7/2018 re-sample	0.0678	0.0683	2		7.52		0.4		3.38 8.45		3.27			
	05/13/19		0.0628		1.89		6.98		<0.1		6.68		1.28 J		103
	11/12/2019		0.0675		2.14		4.98	•	<0.100		6.72	-	1.41 J		93
	5/19/2020		0.0709		2.03		6.86		<0.100		6.83		1.19 J		104
	9/25/2020		0.0617		2.31		7.29		<0.100		6.74		<1.00		94